In Vitro Study of Multi-Therapeutic Properties of Thymus bovei Benth. Essential Oil and Its Main Component for Promoting Their Use in Clinical Practice

. 2018 Sep 15 ; 7 (9) : . [epub] 20180915

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30223562

Grantová podpora
20154247/2015 Internal Grant Agency (IGA) of the Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Czech Republic

Thymus bovei Benth. (TB) is an important plant in the traditional medicine of the Mediterranean region. This study investigates the health-promoting properties of TB essential oil (TB-EO) for its possible use in clinical practice with regards to its cytotoxic, anti-herpes simplex virus type 2 (HSV-2), and antihypertensive (through inhibition of human angiotensin-converting enzyme; ACE) properties. The phytochemical profile of EO (99.9%) was analyzed by Gas Chromatography with Flame-Ionization Detection (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS). In this study, all biological methods were performed at the level of in vitro studies. The results showed that TB-EO exerted remarked cytotoxic properties against human cervical carcinoma cells, colon cancer cells, and lung adenocarcinoma cells with the half-maximal inhibitory concentration (IC50) values of 7.22, 9.30, and 8.62 µg/mL, respectively, in comparison with that of standard anticancer drug cisplatin with IC50 values of 4.24, 5.21, and 5.43 µg/mL, respectively. Fascinatingly, TB-EO showed very weak cytotoxicity on the healthy human fetal lung fibroblast cells with an IC50 value of 118.34 µg/mL compared with that of cisplatin (IC50 = 10.08 µg/mL). TB-EO, its main component geraniol, TB-EO combined with acyclovir (ACV) along with standard ACV, have displayed pronounced inhibitory properties against the replication of HSV-2 with the half-maximal effective concentration (EC50) values of 2.13, 1.92, 0.81 and 1.94 µg/mL, respectively, with corresponding selectivity indices (SI) 98.59, 109.38, 259.26 and 108.25, respectively. TB-EO and geraniol at a concentration of 15 µg/mL showed prominent inhibitory activities against ACE with % of inhibition 95.4% and 92.2%, respectively, compared with that of standard inhibitor captopril (99.8%; 15 µg/mL). Molecular docking studies were performed to unveil the mechanism of action of geraniol as well as structural parameters necessary for anti-HSV-2 activity (through the inhibition of HSV-2 protease) and ACE inhibition. This is the first report on the chemical composition of Egyptian TB-EO along with the above-mentioned biological activities. Our results may be considered as novel findings in the course of a search for new and active anticancer, anti-HSV-2 and antihypertensive agents, and expand the medicinal value of this plant and its phytochemicals in clinical practice.

Zobrazit více v PubMed

Li J.W., Vederas J.C. Drug discovery and natural products: End of an era or an endless frontier? Science. 2009;325:161–165. doi: 10.1126/science.1168243. PubMed DOI

McChesney J.D., Venkataraman S.K., Henri J.T. Plant natural products: Back to the future or into extinction? Phytochemistry. 2007;68:2015–2022. doi: 10.1016/j.phytochem.2007.04.032. PubMed DOI

Jaradat N., Adwan L., K’aibni S., Shraim N., Zaid A.N. Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil. BMC Complement. Altern. Med. 2016;16 doi: 10.1186/s12906-016-1408-2. PubMed DOI PMC

Arab Republic of Egypt. Ministry of Health and Population . The English Text of The Egyptian Pharmacopoeia. Central Administration and Pharmaceutical Affairs, Ministry of Health and Population; Cairo, Egypt: 2005.

Tepe B., Sarikurkcu C., Berk S., Alim A., Akpulat H.A. Chemical composition, radical scavenging and antimicrobial activity of the essential oils of Thymus boveii and Thymus hyemalis. Rec. Nat. Prod. 2011;5:208–220.

Abdel-Hady N.M., El-Hela A.A., Morsy T.A. Phenolic content of some selected lamiaceous egyptian medicinal plants: Antioxidant potential and ecological friend mosquito-larvicldal. J. Egypt. Soc. Parasitol. 2014;44:21–24. doi: 10.12816/0006442. PubMed DOI

Nikolic M.M., Jovanovic K.K., Markovic T.L., Markovic D.L., Gligorijevic N.N., Radulovic S.S., Kostic M., Glamoclija J.M., Sokovic M.D. Antimicrobial synergism and cytotoxic properties of Citrus limon L., Piper nigrum L. and Melaleuca alternifolia (Maiden and Betche) Cheel essential oils. J. Pharm. Pharmacol. 2017;69:1606–1614. doi: 10.1111/jphp.12792. PubMed DOI

Tang J., Hubbard-Lucey V.M., Pearce L., O’Donnell-Tormey J., Shalabi A. The global landscape of cancer cell therapy. Nat. Rev. Drug Discov. 2018;17:465. doi: 10.1038/nrd.2018.74. PubMed DOI

Greenlee H. Natural products for cancer prevention. Semin. Oncol. Nurs. 2012;28:29–44. doi: 10.1016/j.soncn.2011.11.004. PubMed DOI PMC

Kim C., Kim B. Anti-cancer natural products and their bioactive compounds inducing er stress-mediated apoptosis: A review. Nutrients. 2018;10 doi: 10.3390/nu10081021. PubMed DOI PMC

Blowman K., Magalhães M., Lemos M., Cabral C., Pires I. Anticancer properties of essential oils and other natural products. Evid. Based Complement. Altern. Med. 2018;2018 doi: 10.1155/2018/3149362. PubMed DOI PMC

Andrade M., Braga M., Cesar P., Trento M., Esposito M., Silva L. Anticancer properties of essential oils: An overview. Curr. Cancer Drug Targets. 2018 doi: 10.2174/1568009618666180102105843. PubMed DOI

Bayala B., Bassole I.H., Scifo R., Gnoula C., Morel L., Lobaccaro J.-M.A., Simpore J. Anticancer activity of essential oils and their chemical components-a review. Am. J. Cancer Res. 2014;4:591–607. PubMed PMC

Lesgards J.F., Baldovini N., Vidal N., Pietri S. Anticancer activities of essential oils constituents and synergy with conventional therapies: A review. Phytother. Res. 2014;28:1423–1446. doi: 10.1002/ptr.5165. PubMed DOI

Desai D., Bhutkar M., Kulkarni S. Infectivity and growth kinetics of herpes simplex virus type-2 in MOLT4 CCR5+ and CEM CCR5+ T cell lines. Microb. Pathog. 2018;123:82–88. doi: 10.1016/j.micpath.2018.06.035. PubMed DOI

Troche G., Marque Juillet S., Burrel S., Boutolleau D., Bedos J.P., Legriel S. Herpes simplex virus type 2: Cluster of unrelated cases in an intensive care unit. Am. J. Infect. Control. 2016;44:1178–1180. doi: 10.1016/j.ajic.2016.03.035. PubMed DOI

Bittencourt Mde J., Freitas L.K., Drago M.G., Carvalho A.H., Nascimento B.A. Cutaneous neonatal herpes simplex virus infection type 2: A case report. An. Bras. Dermatol. 2016;91:216–218. doi: 10.1590/abd1806-4841.20163870. PubMed DOI PMC

Cao S., Gan Y., Dong X., Lu Z. Herpes simplex virus type 2 and the risk of cervical cancer: A meta-analysis of observational studies. Arch. Gynecol. Obstet. 2014;290:1059–1066. doi: 10.1007/s00404-014-3365-7. PubMed DOI

Hassan S.T., Masarčíková R., Berchová K. Bioactive natural products with anti-herpes simplex virus properties. J. Pharm. Pharmacol. 2015;67:1325–1336. doi: 10.1111/jphp.12436. PubMed DOI

Batty J.A., Tang M., Hall M., Ferrari R., Strauss M.H., Hall A.S. Blood pressure reduction and clinical outcomes with angiotensin-converting enzyme inhibitors and angiotensin ii receptor blockers: Protocol for a systematic review and meta-regression analysis. Syst. Rev. 2018;7:131. doi: 10.1186/s13643-018-0779-5. PubMed DOI PMC

Cheng J., Zhang W., Zhang X., Han F., Li X., He X., Li Q., Chen J. Effect of angiotensin-converting enzyme inhibitors and angiotensin ii receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: A meta-analysis. JAMA Intern. Med. 2014;174:773–785. doi: 10.1001/jamainternmed.2014.348. PubMed DOI

Council of Europe . European Pharmacopoeia. 9th ed. Council of Europe; Strasbourg, France: 2016.

Hassan S.T., Švajdlenka E., Rengasamy K.R., Melichárková R., Pandian S.K. The metabolic profile of essential oils and assessment of anti-urease activity by ESI-mass spectrometry of Salvia officinalis L. S. Afr. J. Bot. 2018 doi: 10.1016/j.sajb.2018.04.023. DOI

Adams R.P. Identification of Essential Oils by Ion Trap Mass Spectroscopy. Academic press; San Diego, CA, USA: 2012.

McLafferty F.W. The Wiley/NBS Registry of Mass Spectral Data. Wiley; New Jersey, NJ, USA: 1989.

König W., Joulain D., Hochmuth D. Terpenoids and Related Constituents of Essential Oils, Massfinder 3. Convenient and Rapid Analysis of GCMS; Hamburg, Germany: 2004.

Tămaş M., Toiu A., Oniga I., Deliu C., Oltean B., Coldea G. Quantitative determination of total polyphenols and flavonoids from indigenous species of epilobium of wild origin and ‘in vitro’ regenerated plantlets. Contrib. Bot. 2009;44:119–123.

Hassan S.T., Berchová K., Majerová M., Pokorná M., Švajdlenka E. In vitro synergistic effect of Hibiscus sabdariffa aqueous extract in combination with standard antibiotics against Helicobacter pylori clinical isolates. Pharm. Biol. 2016;54:1736–1740. PubMed

Bahorun T., Aumjaud E., Ramphul H., Rycha M., Luximon-Ramma A., Trotin F., Aruoma O.I. Phenolic constituents and antioxidant capacities of Crataegus monogyna (Hawthorn) callus extracts. Mol. Nutr. Food Res. 2003;47:191–198. PubMed

Supino R. Methods in Moleuclar Biology. Volume 43. Elsevier; New York, NY, USA: 1995. Mtt assays; pp. 137–149. PubMed

Hassan S.T., Švajdlenka E., Berchová-Bímová K. Hibiscus sabdariffa L. and its bioactive constituents exhibit antiviral activity against HSV-2 and anti-enzymatic properties against urease by an ESI-MS based assay. Molecules. 2017;22 doi: 10.3390/molecules22050722. PubMed DOI PMC

Hassan S.T., Švajdlenka E. Biological evaluation and molecular docking of protocatechuic acid from Hibiscus sabdariffa L. as a potent urease inhibitor by an ESI-MS based method. Molecules. 2017;22 doi: 10.3390/molecules22101696. PubMed DOI PMC

Hassan S.T.S., Šudomová M., Berchová-Bímová K., Gowrishankar S., Rengasamy K.R.R. Antimycobacterial, Enzyme Inhibition, and Molecular Interaction Studies of Psoromic Acid in Mycobacterium tuberculosis: Efficacy and Safety Investigations. J. Clin. Med. 2018;7 doi: 10.3390/jcm7080226. PubMed DOI PMC

Dassault Systèmes BIOVIA . Discovery Studio Modeling Environment, Release 2017. Dassault Systèmes; San Diego, CA, USA: 2017.

Cushman D.W., Cheung H.S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 1971;20:1637–1648. PubMed

Mansour S.A., El-Sharkawy A.Z., Abdel-Hamid N.A. Toxicity of essential plant oils, in comparison with conventional insecticides, against the desert locust, Schistocerca gregaria (Forskål) Ind. Crops Prod. 2015;63:92–99. doi: 10.1016/j.indcrop.2014.10.038. DOI

Aboutabl E., Soliman F., El-Zalabani S., Brunke E., El Kersh T. Essential oils of Thymus bovei Benth. Sci. Pharm. 1986;54:43–48.

Noroozisharaf A., Kaviani M. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiol. Mol. Biol. Plants. 2018;24:423–431. doi: 10.1007/s12298-018-0510-y. PubMed DOI PMC

Delgado-Adámez J., Garrido M., Bote M.E., Fuentes-Pérez M.C., Espino J., Martín-Vertedor D. Chemical composition and bioactivity of essential oils from flower and fruit of Thymbra capitata and Thymus species. J. Food Sci. Technol. 2017;54:1857–1865. doi: 10.1007/s13197-017-2617-5. PubMed DOI PMC

Roby M.H.H., Sarhan M.A., Selim K.A.-H., Khalel K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 2013;43:827–831. doi: 10.1016/j.indcrop.2012.08.029. DOI

Ali I.B.E.H., Bahri R., Chaouachi M., Boussaïd M., Harzallah-Skhiri F. Phenolic content, antioxidant and allelopathic activities of various extracts of Thymus numidicus Poir. organs. Ind. Crops Prod. 2014;62:188–195.

Baharfar R., Azimi R., Mohseni M. Antioxidant and antibacterial activity of flavonoid-, polyphenol-and anthocyanin-rich extracts from Thymus kotschyanus boiss & hohen aerial parts. J. Food Sci. Technol. 2015;52:6777–6783. PubMed PMC

Köksal E., Bursal E., Gülçin İ., Korkmaz M., Çağlayan C., Gören A.C., Alwasel S.H. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry. Int. J. Food Prop. 2017;20:514–525. doi: 10.1080/10942912.2016.1168438. DOI

Mata A., Proença C., Ferreira A., Serralheiro M., Nogueira J., Araújo M. Antioxidant and antiacetylcholinesterase activities of five plants used as portuguese food spices. Food Chem. 2007;103:778–786. doi: 10.1016/j.foodchem.2006.09.017. DOI

Taghouti M., Martins-Gomes C.A., Schäfer J., Félix L.M., Santos J.A., Bunzel M., Nunes F.M., Silva A.M. Thymus pulegioides L. as a rich source of antioxidant, anti-proliferative and neuroprotective phenolic compounds. Food Funct. 2018 doi: 10.1039/C8FO00456K. PubMed DOI

Nickavar B., Esbati N. Evaluation of the antioxidant capacity and phenolic content of three Thymus species. J. Acupunct. Meridian Stud. 2012;5:119–125. doi: 10.1016/j.jams.2012.03.003. PubMed DOI

Galasso S., Pacifico S., Kretschmer N., Pan S.-P., Marciano S., Piccolella S., Monaco P., Bauer R. Influence of seasonal variation on Thymus longicaulis C. Presl chemical composition and its antioxidant and anti-inflammatory properties. Phytochemistry. 2014;107:80–90. doi: 10.1016/j.phytochem.2014.08.015. PubMed DOI

Jaouadi R., Cardoso S.M., Silva A.M., Yahia I.B.H., Boussaid M., Zaouali Y. Variation of phenolic constituents of Tunisian Thymus capitatus (L.) Hoff. et Link. populations. Biochem. Syst. Ecol. 2018;77:10–15. doi: 10.1016/j.bse.2017.12.009. DOI

Tohidi B., Rahimmalek M., Arzani A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017;220:153–161. doi: 10.1016/j.foodchem.2016.09.203. PubMed DOI

Zu Y., Yu H., Liang L., Fu Y., Efferth T., Liu X., Wu N. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules. 2010;15:3200–3210. doi: 10.3390/molecules15053200. PubMed DOI PMC

Ait M’Barek L., Ait Mouse H., Jaâfari A., Aboufatima R., Benharref A., Kamal M., Bénard J., El Abbadi N., Bensalah M., Gamouh A. Cytotoxic effect of essential oil of thyme (Thymus broussonettii) on the IGR-OV1 tumor cells resistant to chemotherapy. Braz. J. Med. Biol. Res. 2007;40:1537–1544. doi: 10.1590/S0100-879X2007001100014. PubMed DOI

Nikolić M., Glamočlija J., Ferreira I.C., Calhelha R.C., Fernandes Â., Marković T., Marković D., Giweli A., Soković M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and reut and Thymus vulgaris L. essential oils. Ind. Crops Prod. 2014;52:183–190. doi: 10.1016/j.indcrop.2013.10.006. DOI

Kitazato K., Wang Y., Kobayashi N. Viral infectious disease and natural products with antiviral activity. Drug Discov. Ther. 2007;1:14–22. PubMed

Reusser P. Herpesvirus resistance to antiviral drugs: A review of the mechanisms, clinical importance and therapeutic options. J. Hosp. Infect. 1996;33:235–248. doi: 10.1016/S0195-6701(96)90010-9. PubMed DOI

Piret J., Boivin G. Resistance of herpes simplex viruses to nucleoside analogues: Mechanisms, prevalence, and management. Antimicrob. Agents Chemother. 2011;55:459–472. doi: 10.1128/AAC.00615-10. PubMed DOI PMC

Hoog S.S., Smith W.W., Qiu X., Janson C.A., Hellmig B., McQueney M.S., O’Donnell K., O’Shannessy D., DiLella A.G., Debouck C., et al. Active site cavity of herpesvirus proteases revealed by the crystal structure of herpes simplex virus protease/inhibitor complex. Biochemistry. 1997;36:14023–14029. doi: 10.1021/bi9712697. PubMed DOI

Zouari S., Zouari N., Fakhfakh N., Bougatef A., Ayadi M., Neffati M. Chemical composition and biological activities of a new essential oil chemotype of Tunisian Artemisia herba alba Asso. J. Med. Plant Res. 2010;4:871–880.

Mansour M.B., Balti R., Rabaoui L., Bougatef A., Guerfel M. Chemical composition, angiotensin i-converting enzyme (ACE) inhibitory, antioxidant and antimicrobial activities of the essential oil from south Tunisian Ajuga pseudoiva Rob. Lamiaceae. Process. Biochem. 2013;48:723–729. doi: 10.1016/j.procbio.2013.02.022. DOI

Balasuriya B.N., Rupasinghe H.V. Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct. Foods Health Dis. 2011;1:172–188.

Liu J.-C., Hsu F.-L., Tsai J.-C., Chan P., Liu J.Y.-H., Thomas G.N., Tomlinson B., Lo M.-Y., Lin J.-Y. Antihypertensive effects of tannins isolated from traditional chinese herbs as non-specific inhibitors of angiontensin converting enzyme. Life Sci. 2003;73:1543–1555. doi: 10.1016/S0024-3205(03)00481-8. PubMed DOI

Mallikarjun Gouda K., Gowda L.R., Rao A.A., Prakash V. Angiotensin i-converting enzyme inhibitory peptide derived from glycinin, the 11S globulin of soybean (Glycine max) J. Agric. Food Chem. 2006;54:4568–4573. doi: 10.1021/jf060264q. PubMed DOI

Natesh R., Schwager S.L., Evans H.R., Sturrock E.D., Acharya K.R. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin i-converting enzyme. Biochemistry. 2004;43:8718–8724. doi: 10.1021/bi049480n. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace