Antimycobacterial, Enzyme Inhibition, and Molecular Interaction Studies of Psoromic Acid in Mycobacterium tuberculosis: Efficacy and Safety Investigations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30127304
PubMed Central
PMC6111308
DOI
10.3390/jcm7080226
PII: jcm7080226
Knihovny.cz E-zdroje
- Klíčová slova
- UDP-galactopyranose mutase, antitubercular drug, arylamine N-acetyltransferase, drug design, drug resistance, psoromic acid,
- Publikační typ
- časopisecké články MeSH
The current study explores the antimycobacterial efficacy of lichen-derived psoromic acid (PA) against clinical strains of Mycobacterium tuberculosis (M.tb). Additionally, the inhibitory efficacy of PA against two critical enzymes associated with M.tb, namely, UDP-galactopyranose mutase (UGM) and arylamine-N-acetyltransferase (TBNAT), as drug targets for antituberculosis therapy were determined. PA showed a profound inhibitory effect towards all the M.tb strains tested, with minimum inhibitory concentrations (MICs) ranging between 3.2 and 4.1 µM, and selectivity indices (SIs) ranging between 18.3 and 23.4. On the other hand, the standard drug isoniazid (INH) displayed comparably high MIC values (varying from 5.4 to 5.8 µM) as well as low SI values (13.0⁻13.9). Interestingly, PA did not exhibit any cytotoxic effects on a human liver hepatocellular carcinoma cell line even at the highest concentration tested (75 µM). PA demonstrated remarkable suppressing propensity against UGM compared to standard uridine-5'-diphosphate (UDP), with 85.8 and 99.3% of inhibition, respectively. In addition, PA also exerted phenomenal inhibitory efficacy (half maximal inhibitory concentration (IC50) value = 8.7 µM, and 77.4% inhibition) against TBNAT compared with standard INH (IC50 value = 6.2 µM and 96.3% inhibition). Furthermore, in silico analysis validated the outcomes of in vitro assays, as the molecular interactions of PA with the active sites of UGM and TBNAT were unveiled using molecular docking and structure⁻activity relationship studies. Concomitantly, our findings present PA as an effective and safe natural drug plausible for use in controlling tuberculosis infections.
Department of Biotechnology Science Campus Alagappa University Karaikudi 630003 India
Museum of literature in Moravia Klášter 1 664 61 Rajhrad Czech Republic
REEF Environmental Consultancy Services 2 Kamaraj Street S P Nagar Puducherry 605 001 India
Zobrazit více v PubMed
Raj R., Biot C., Carrère-Kremer S., Kremer L., Guérardel Y., Gut J., Rosenthal P.J., Forge D., Kumar V. 7-chloroquinoline–isatin conjugates: Antimalarial, antitubercular, and cytotoxic evaluation. Chem. Biol. Drug Des. 2014;83:622–629. doi: 10.1111/cbdd.12273. PubMed DOI
World Health Organization Fact Sheet on Tuberculosis (Updated January 2018) [(accessed on 30 January 2018)]; Available online: http://www.who.int/en/news-room/fact-sheets/detail/tuberculosis.
WHO Drug-Resistant TB: Global Situation. [(accessed on 30 January 2018)];2018 Available online: http://www.who.int/tb/areas-of-work/drug-resistant-tb/global-situation/en/
Herrmann J., Rybniker J., Müller R. Novel and revisited approaches in antituberculosis drug discovery. Curr. Opin. Biotechnol. 2017;48:94–101. doi: 10.1016/j.copbio.2017.03.023. PubMed DOI
Dong M., Pfeiffer B., Altmann K.-H. Recent developments in natural product-based drug discovery for tuberculosis. Drug Discov. Today. 2017;22:585–591. doi: 10.1016/j.drudis.2016.11.015. PubMed DOI
Young D.B., Perkins M.D., Duncan K., Barry C.E. Confronting the scientific obstacles to global control of tuberculosis. J Clin. Investig. 2008;118:1255–1265. doi: 10.1172/JCI34614. PubMed DOI PMC
Borrelli S., Zandberg W.F., Mohan S., Ko M., Martinez-Gutierrez F., Partha S.K., Sanders D.A., Av-Gay Y., Pinto B.M. Antimycobacterial activity of UDP-galactopyranose mutase inhibitors. Int. J. Antimicrob. Agents. 2010;36:364–368. doi: 10.1016/j.ijantimicag.2010.06.030. PubMed DOI
Del Campo J.S.M., Eckshtain-Levi M., Vogelaar N.J., Sobrado P. Identification of Aspergillus fumigatus UDP-Galactopyranose mutase inhibitors. Sci. Rep. 2017;7:10836. doi: 10.1038/s41598-017-11022-5. PubMed DOI PMC
Tanner J.J., Boechi L., McCammon J.A., Sobrado P. Structure, mechanism, and dynamics of udp-galactopyranose mutase. Arch. Biochem. Biophys. 2014;544:128–141. doi: 10.1016/j.abb.2013.09.017. PubMed DOI PMC
Fu J., Fu H., Dieu M., Halloum I., Kremer L., Xia Y., Pan W., Vincent S.P. Identification of inhibitors targeting Mycobacterium tuberculosis cell wall biosynthesis via dynamic combinatorial chemistry. Chem. Commun. 2017;53:10632–10635. doi: 10.1039/C7CC05251K. PubMed DOI
Villaume S.A., Fu J., N’Go I., Liang H., Lou H., Kremer L., Pan W., Vincent S.P. Natural and synthetic flavonoids as potent Mycobacterium tuberculosis UGM inhibitors. Chem. Eur. J. 2017;23:10423–10429. doi: 10.1002/chem.201701812. PubMed DOI
Partha S.K., Sadeghi-Khomami A., Slowski K., Kotake T., Thomas N.R., Jakeman D.L., Sanders D.A. Chemoenzymatic synthesis, inhibition studies, and x-ray crystallographic analysis of the phosphono analog of UDP-galp as an inhibitor and mechanistic probe for UDP-galactopyranose mutase. J. Mol. Biol. 2010;403:578–590. doi: 10.1016/j.jmb.2010.08.053. PubMed DOI
Westwood I.M., Bhakta S., Russell A.J., Fullam E., Anderton M.C., Kawamura A., Mulvaney A.W., Vickers R.J., Bhowruth V., Besra G.S. Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars. Protein Cell. 2010;1:82–95. doi: 10.1007/s13238-010-0006-1. PubMed DOI PMC
Butcher N.J., Tiang J., Minchin R.F. Regulation of arylamine N-acetyltransferases. Curr. Drug Metab. 2008;9:498–504. doi: 10.2174/138920008784892128. PubMed DOI
Madikane V.E., Bhakta S., Russell A.J., Campbell W.E., Claridge T.D., Elisha B.G., Davies S.G., Smith P., Sim E. Inhibition of mycobacterial arylamine N-acetyltransferase contributes to anti-mycobacterial activity of Warburgia salutaris. Bioorg. Med. Chem. 2007;15:3579–3586. doi: 10.1016/j.bmc.2007.02.011. PubMed DOI
Sim E., Sandy J., Evangelopoulos D., Fullam E., Bhakta S., Westwood I., Krylova A., Lack N., Noble M. Arylamine N-acetyltransferases in mycobacteria. Curr. Drug Metab. 2008;9:510–519. doi: 10.2174/138920008784892100. PubMed DOI PMC
Sim E., Pinter K., Mushtaq A., Upton A., Sandy J., Bhakta S., Noble M. Arylamine N-acetyltransferases: A pharmacogenomic approach to drug metabolism and endogenous function. Biochem. Soc. Trans. 2003;31:615–619. doi: 10.1042/bst0310615. PubMed DOI
Sweidan A., Chollet-Krugler M., Sauvager A., Van de Weghe P., Chokr A., Bonnaure-Mallet M., Tomasi S., Bousarghin L. Antibacterial activities of natural lichen compounds against Streptococcus gordonii and Porphyromonas gingivalis. Fitoterapia. 2017;121:164–169. doi: 10.1016/j.fitote.2017.07.011. PubMed DOI
Vartia K.O. The Lichens. Academic Press, Inc.; New York, NY, USA: 1973. Antibiotics in lichens; pp. 547–561.
Shibata S. Der stoffwechsel sekundärer pflanzenstoffe/the Metabolism of Secondary Plant Products. Springer; Berlin, Heidelberg, Germany: 1958. Especial compounds of lichens; pp. 560–623.
Emsen B., Aslan A., Togar B., Turkez H. In vitro antitumor activities of the lichen compounds olivetoric, physodic and psoromic acid in rat neuron and glioblastoma cells. Pharm. Biol. 2016;54:1748–1762. doi: 10.3109/13880209.2015.1126620. PubMed DOI
Da Rosa Guterres Z., Honda N.K., Coelho R.G., Alcantara G.B., Micheletti A.C. Antigenotoxicity of depsidones isolated from Brazilian lichens. Orbital. Electron. J. Chem. 2017;9:50–54. doi: 10.17807/orbital.v9i1.897. DOI
Brandão L.F.G., Alcantara G.B., Matos M.D.F.C., Bogo D., dos Santos Freitas D., Oyama N.M., Honda N.K. Cytotoxic evaluation of phenolic compounds from lichens against melanoma cells. Chem. Pharm. Bull. 2013;61:176–183. PubMed
Behera B.C., Mahadik N., Morey M. Antioxidative and cardiovascular-protective activities of metabolite usnic acid and psoromic acid produced by lichen species Usnea complanata under submerged fermentation. Pharm. Biol. 2012;50:968–979. doi: 10.3109/13880209.2012.654396. PubMed DOI
Deraeve C.L., Guo Z., Bon R.S., Blankenfeldt W., DiLucrezia R., Wolf A., Menninger S., Stigter E.A., Wetzel S., Choidas A. Psoromic acid is a selective and covalent rab-prenylation inhibitor targeting autoinhibited rabggtase. J. Am. Chem. Soc. 2012;134:7384–7391. doi: 10.1021/ja211305j. PubMed DOI
Clinical and Laboratory Standards Institute . Laboratory Detection and Identification of Mycobacteria. 1st ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2008. Approved Guideline; CLSI Document M48-A.
Clinical and Laboratory Standards Institute . Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes. 2nd ed. CLSI; Wayne, PA, USA: 2011. Approved Standard M24-A2. PubMed
Semelková L., Janošcová P., Fernandes C., Bouz G., Janďourek O., Konečná K., Paterová P., Navrátilová L., Kuneš J., Doležal M. Design, synthesis, antimycobacterial evaluation, and in silico studies of 3-(phenylcarbamoyl)-pyrazine-2-carboxylic acids. Molecules. 2017;22:1491. doi: 10.3390/molecules22091491. PubMed DOI PMC
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Zhang Q., Liu H.W. Studies of UDP-galactopyranose mutase from Escherichia coli: An unusual role of reduced fad in its catalysis. J. Am. Chem. Soc. 2000;122:9065–9070. doi: 10.1021/ja001333z. DOI
Veerapen N., Yuan Y., Sanders D.A., Pinto B.M. Synthesis of novel ammonium and selenonium ions and their evaluation as inhibitors of udp-galactopyranose mutase. Carbohydr. Res. 2004;339:2205–2217. doi: 10.1016/j.carres.2004.07.012. PubMed DOI
Abuhammad A., Lack N., Schweichler J., Staunton D., Sim R.B., Sim E. Improvement of the expression and purification of Mycobacterium tuberculosis arylamine N-acetyltransferase (TBNAT) a potential target for novel anti-tubercular agents. Protein Expr. Purif. 2011;80:246–252. doi: 10.1016/j.pep.2011.06.021. PubMed DOI
Brooke E.W., Davies S.G., Mulvaney A.W., Pompeo F., Sim E., Vickers R.J. An approach to identifying novel substrates of bacterial arylamine N-acetyltransferases. Bioorg. Med. chem. 2003;11:1227–1234. doi: 10.1016/S0968-0896(02)00642-9. PubMed DOI
Trott O., Olson A.J. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Hassan S.T.S., Švajdlenka E. Biological evaluation and molecular docking of protocatechuic acid from Hibiscus sabdariffa L. As a potent urease inhibitor by an esi-ms based method. Molecules. 2017;22:1696. doi: 10.3390/molecules22101696. PubMed DOI PMC
BIOVIA D.S. Discovery Studio Modeling Environment. Dassault Systèmes; San Diego, CA, USA: 2016.
Ramis I.B., Vianna J.S., Reis A.J., von Groll A., Ramos D.F., Viveiros M., da Silva P.E.A. Antimicrobial and efflux inhibitor activity of usnic acid against Mycobacterium abscessus. Planta Med. 2018;6 doi: 10.1055/a-0639-5412. PubMed DOI
Fadipe V.O., Mongalo N.I., Opoku A.R., Dikhoba P.M., Makhafola T.J. Isolation of anti-mycobacterial compounds from Curtisia dentata (burm. F.) ca sm (curtisiaceae) BMC Complement. Altern. Med. 2017;17:306. doi: 10.1186/s12906-017-1818-9. PubMed DOI PMC
Ganihigama D.U., Sureram S., Sangher S., Hongmanee P., Aree T., Mahidol C., Ruchirawat S., Kittakoop P. Antimycobacterial activity of natural products and synthetic agents: Pyrrolodiquinolines and vermelhotin as anti-tubercular leads against clinical multidrug resistant isolates of Mycobacterium tuberculosis. Eur. J. Med. Chem. 2015;89:1–12. doi: 10.1016/j.ejmech.2014.10.026. PubMed DOI
Tasdemir D., Franzblau S.G. In vitro antituberculotic activity of several lichen metabolites. Planta Med. 2007;73:174. doi: 10.1055/s-2007-986955. DOI
Zhang Y., Permar S., Sun Z.H. Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J. Med. Microbiol. 2002;51:42–49. doi: 10.1099/0022-1317-51-1-42. PubMed DOI
Portaels F., Pattyn S.R. Growth of mycobacteria in relation to the pH of the medium. Ann. Microbiol. (Paris) 1982;133:213–221. PubMed
Yew W.W., Leung C.C. Antituberculosis drugs and hepatotoxicity. Respirology. 2006;11:699–707. doi: 10.1111/j.1440-1843.2006.00941.x. PubMed DOI
Chan R., Benet L.Z. Evaluation of the relevance of dili predictive hypotheses in early drug development: Review of in vitro methodologies vs. BDDCS classification. Toxicol. Res. 2018;7:358–370. doi: 10.1039/C8TX00016F. PubMed DOI PMC
Dykhuizen E.C., May J.F., Tongpenyai A., Kiessling L.L. Inhibitors of UDP-galactopyranose mutase thwart mycobacterial growth. J. Am. Chem. Soc. 2008;130:6706–6707. doi: 10.1021/ja8018687. PubMed DOI
Castagnolo D., de Logu A., Radi M., Bechi B., Manetti F., Magnani M., Supino S., Meleddu R., Chisu L., Botta M. Synthesis, biological evaluation and sar study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. 2008;16:8587–8591. doi: 10.1016/j.bmc.2008.08.016. PubMed DOI
Lo H.-H., Chung J. The effects of plant phenolics, caffeic acid, chlorogenic acid and ferulic acid on arylamine N-acetyltransferase activities in human gastrointestinal microflora. Anticancer Res. 1999;19:133–139. PubMed
Kukongviriyapan V., Phromsopha N., Tassaneeyakul W., Kukongviriyapan U., Sripa B., Hahnvajanawong V., Bhudhisawasdi V. Inhibitory effects of polyphenolic compounds on human arylamine N-acetyltransferase 1 and 2. Xenobiotica. 2006;36:15–28. doi: 10.1080/00498250500489901. PubMed DOI
Wang H.H., Chung J.G., Ho C.C., Wu L.T., Chang S.H. Aloe-emodin effects on arylamine N-acetyltransferase activity in the bacterium Helicobacter pylori. Planta Med. 1998;64:176–178. doi: 10.1055/s-2006-957399. PubMed DOI
Kawamura A., Graham J., Mushtaq A., Tsiftsoglou S.A., Vath G.M., Hanna P.E., Wagner C.R., Sim E. Eukaryotic arylamine N-acetyltransferase: Investigation of substrate specificity by high-throughput screening. Biochem. Pharm. 2005;69:347–359. doi: 10.1016/j.bcp.2004.09.014. PubMed DOI
Van Straaten K.E., Kuttiyatveetil J.R., Sevrain C.M., Villaume S.A., Jiménez-Barbero J.S., Linclau B., Vincent S.P.P., Sanders D.A. Structural basis of ligand binding to UDP-galactopyranose mutase from Mycobacterium tuberculosis using substrate and tetrafluorinated substrate analogues. J. Am. Chem. Soc. 2015;137:1230–1244. doi: 10.1021/ja511204p. PubMed DOI
Fullam E., Talbot J., Abuhammed A., Westwood I., Davies S.G., Russell A.J., Sim E. Design, synthesis and structure—Activity relationships of 3,5-diaryl-1H-pyrazoles as inhibitors of arylamine N-acetyltransferase. Bioorg. Med. Chem. Lett. 2013;23:2759–2764. doi: 10.1016/j.bmcl.2013.02.052. PubMed DOI
Abuhammad A., Fullam E., Lowe E.D., Staunton D., Kawamura A., Westwood I.M., Bhakta S., Garner A.C., Wilson D.L., Seden P.T. Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: An essential enzyme for mycobacterial survival inside macrophages. PLoS ONE. 2012;7:e52790. doi: 10.1371/journal.pone.0052790. PubMed DOI PMC
Gruber T.D., Borrok M.J., Westler W.M., Forest K.T., Kiessling L.L. Ligand binding and substrate discrimination by UDP-galactopyranose mutase. J. Mol. Biol. 2009;391:327–340. doi: 10.1016/j.jmb.2009.05.081. PubMed DOI PMC
Rahim F., Zaman K., Ullah H., Taha M., Wadood A., Javed M.T., Rehman W., Ashraf M., Uddin R., Uddin I. Synthesis of 4-thiazolidinone analogs as potent in vitro anti-urease agents. Bioorg. Chem. 2015;63:123–131. doi: 10.1016/j.bioorg.2015.10.005. PubMed DOI