A Multi-Biochemical and In Silico Study on Anti-Enzymatic Actions of Pyroglutamic Acid against PDE-5, ACE, and Urease Using Various Analytical Techniques: Unexplored Pharmacological Properties and Cytotoxicity Evaluation

. 2019 Aug 21 ; 9 (9) : . [epub] 20190821

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31438631

In the current study, pyroglutamic acid (pGlu), a natural amino acid derivative, has efficiently inhibited the catalytic activities of three important enzymes, namely: Human recombinant phosphodiesterase-5A1 (PDE5A1), human angiotensin-converting enzyme (ACE), and urease. These enzymes were reported to be associated with several important clinical conditions in humans. Radioactivity-based assay, spectrophotometric-based assay, and an Electrospray Ionization-Mass Spectrometry-based method were employed to ascertain the inhibitory actions of pGlu against PDE5A1, ACE, and urease, respectively. The results unveiled that pGlu potently suppressed the activity of PDE5A1 (half-maximal inhibitory concentration; IC50 = 5.23 µM) compared with that of standard drug sildenafil citrate (IC50 = 7.14 µM). Moreover, pGlu at a concentration of 20 µg/mL was found to efficiently inhibit human ACE with 98.2% inhibition compared with that of standard captopril (99.6%; 20 µg/mL). The urease-catalyzed reaction was also remarkably inactivated by pGlu and standard acetohydroxamic acid with IC50 values of 1.8 and 3.9 µM, respectively. Remarkably, the outcome of in vitro cytotoxicity assay did not reveal any significant cytotoxic properties of pGlu against human cervical carcinoma cells and normal human fetal lung fibroblast cells. In addition to in vitro assays, molecular docking analyses were performed to corroborate the outcomes of in vitro results with predicted structure-activity relationships. In conclusion, pGlu could be presented as a natural and multifunctional agent with promising applications in the treatment of some ailments connected with the above-mentioned anti-enzymatic properties.

Zobrazit více v PubMed

Patel K., Ahmed Z.S., Huang X., Yang Q., Ekinci E., Neslund-Dudas C.M., Mitra B., Elnady F.A., Ahn Y.H., Yang H., et al. Discovering proteasomal deubiquitinating enzyme inhibitors for cancer therapy: lessons from rational design, nature and old drug reposition. Future Med Chem. 2018;10:2087–2108. doi: 10.4155/fmc-2018-0091. PubMed DOI PMC

Eid H.M., Wright M.L., Anil Kumar N.V., Qawasmeh A., Hassan S.T.S., Mocan A., Nabavi S.M., Rastrelli L., Atanasov A.G., Haddad P.S. Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by Medicinal Plant and Food Ingredients. Front. Pharmacol. 2017;8:387. PubMed PMC

Harvey A.L., Edrada-Ebel R., Quinn R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015;14:111–129. PubMed

Kumar A., Bachhawat A.K. Pyroglutamic acid: Throwing light on a lightly studied metabolite. Curr. Sci. 2012;102:288–297.

Liss D.B., Paden M.S., Schwarz E.S., Mullins M.E. What is the clinical significance of 5-oxoproline (pyroglutamic acid) in high anion gap metabolic acidosis following paracetamol (acetaminophen) exposure? Clin. Toxicol. 2013;51:817–827. doi: 10.3109/15563650.2013.844822. PubMed DOI

Sasaki S., Futagi Y., Kobayashi M., Ogura J., Iseki K. Functional characterization of 5-oxoproline transport via SLC16A1/MCT1. J. Biol. Chem. 2015;290:2303–2311. doi: 10.1074/jbc.M114.581892. PubMed DOI PMC

Yoshinari O., Igarashi K. Anti-diabetic effect of pyroglutamic acid in type 2 diabetic Goto-Kakizaki rats and KK-Ay mice. Br. J. Nutr. 2011;106:995–1004. doi: 10.1017/S0007114511001279. PubMed DOI

Silva A.R., Silva C.G., Ruschel C., Helegda C., Wyse A.T., Wannmacher C.M., Wajner M., Dutra-Filho C.S. L-pyroglutamic acid inhibits energy production and lipid synthesis in cerebral cortex of young rats in vitro. Neurochem. Res. 2001;26:1277–1283. doi: 10.1023/A:1014289232039. PubMed DOI

Corinaldesi C., Di Luigi L., Lenzi A., Crescioli C. Phosphodiesterase type 5 inhibitors: back and forward from cardiac indications. J. Endocrinol. Invest. 2016;39:143–151. doi: 10.1007/s40618-015-0340-5. PubMed DOI PMC

Hamet P., Tremblay J. Platelet cGMP-binding Phosphodiesterase. Methods Enzymol. 1988;159:710–722. PubMed

Francis S.H., Corbin J.D. Purification of cGMP-Binding Protein Phosphodiesterase from Rat Lung. Methods Enzymol. 1988;159:722–729. PubMed

Lin C.S. Tissue Expression, Distribution, and Regulation of PDE5. Int. J. Impotence Res. 2004;16:S8–S10. doi: 10.1038/sj.ijir.3901207. PubMed DOI

Kouvelas D., Goulas A., Papazisis G., Sardeli C., Pourzitaki C. PDE5 Inhibitors: In Vitro and In Vivo Pharmacological Profile. Curr. Pharm. Des. 2009;15:3464–3475. doi: 10.2174/138161209789206971. PubMed DOI

Giordano D., De Stefano M.E., Citro G., Modica A., Giorgi M. Expression of cGMP-Binding cGMP-Specific Phosphodiesterase (PDE5) in Mouse Tissues and Cell Lines Using an Antibody Against the Eenzyme Aamino-Terminal Domain. Biochim. Biophys. Acta Mol. Cell Res. 2001;1539:16–27. PubMed

Regulska K., Stanisz B., Regulski M., Murias M. How to design a potent, specific, and stable angiotensin-converting enzyme inhibitor. Drug Discov. Today. 2014;19:1731–1743. doi: 10.1016/j.drudis.2014.06.026. PubMed DOI

Lever A.F., Hole D.J., Gillis C.R., McCallum I.R., McInnes G.T., MacKinnon P.L., Meredith P.A., Murray L.S., Reid J.L., Robertson J.W. Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet. 1998;352:179–184. doi: 10.1016/S0140-6736(98)03228-0. PubMed DOI

Regulski M., Regulska K., Stanisz B.J., Murias M., Gieremek P., Wzgarda A., Niznik B. Chemistry and pharmacology of Angiotensin-converting enzyme inhibitors. Curr. Pharm. Des. 2015;21:1764–1775. doi: 10.2174/1381612820666141112160013. PubMed DOI

Hassan S.T.S., Švajdlenka E., Rengasamy K.R.R., Melichárková R., Pandian S.K. S. Afr. J. Bot. 2019;120:175–178. doi: 10.1016/j.sajb.2018.04.023. DOI

Kappaun K., Piovesan A.R., Carlini C.R., Ligabue-Braun R. Ureases: Historical aspects, catalytic, and non-catalytic properties - A review. J. Adv. Res. 2018;13:3–17. doi: 10.1016/j.jare.2018.05.010. PubMed DOI PMC

Hassan S.T., Šudomová M. The Development of Urease Inhibitors: What Opportunities Exist for Better Treatment of Helicobacter pylori Infection in Children? Children. 2017;4:2. doi: 10.3390/children4010002. PubMed DOI PMC

Amtul Z., Rahman A.U., Siddiqui R.A., Choudhary M.I. Chemistry and mechanism of urease inhibition. Curr. Med. Chem. 2002;9:1323–1348. doi: 10.2174/0929867023369853. PubMed DOI

Awllia J.A.J., Sara A., Wahab A.-T., Al-Ghamdi M., Rasheed S., Huwait E., Iqbal Choudhary M. Discovery of new inhibitors of urease enzyme: A study using STD-NMR spectroscopy. Lett. Drug Des. Discov. 2015;12:819–827. doi: 10.2174/1570180812666150520001629. DOI

Wang H., Liu Y., Huai Q., Cai J., Zoraghi R., Francis S.H., Corbin J.D., Robinson H., Xin Z., Lin G., et al. Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development. J. Biol. Chem. 2006;281:469–479. doi: 10.1074/jbc.M512527200. PubMed DOI

Shang N.N., Shao Y.X., Cai Y.H., Guan M., Huang M., Cui W., He L., Yu Y.J., Huang L., Li Z., et al. Discovery of 3-(4-Hydroxybenzyl)-1-(thiophen-2-yl)chromeno[2,3-c]pyrrol-9(2H)-one as a Phosphodiesterase-5 Inhibitor and Its Complex Crystal Structure. Biochem. Pharmacol. 2014;89:86–98. doi: 10.1016/j.bcp.2014.02.013. PubMed DOI

Cushman D.W., Cheung H.S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 1971;20:1637–1648. doi: 10.1016/0006-2952(71)90292-9. PubMed DOI

Hassan S.T.S., Švajdlenka E., Berchová-Bímová K. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-enzymatic Properties against Urease by an ESI-MS Based Assay. Molecules. 2017;22:722. doi: 10.3390/molecules22050722. PubMed DOI PMC

Supino R. Methods in molecular biology. In: Hare S., Atterwill C.K., editors. In Vitro Toxicity Testing Protocols. Humana Press; Totowa, NJ, USA: 1995. pp. 137–149.

Hassan S.T.S., Švajdlenka E. Biological evaluation and molecular docking of protocatechuic acid from Hibiscus sabdariffa L. as a potent urease inhibitor by an ESI-MS based method. Molecules. 2017;22:1696. doi: 10.3390/molecules22101696. PubMed DOI PMC

Hassan S.T.S., Šudomová M., Berchová-Bímová K., Gowrishankar S., Rengasamy K.R.R. Antimycobacterial, Enzyme Inhibition, and Molecular Interaction Studies of Psoromic Acid in Mycobacterium tuberculosis: Efficacy and Safety Investigations. J. Clin. Med. 2018;7:226. doi: 10.3390/jcm7080226. PubMed DOI PMC

Dassault Systèmes BIOVIA . Discovery Studio Modeling Environment, Release 2017. Dassault Systèmes; San Diego, CA, USA: 2017.

Oh T.Y., Kang K.K., Ahn B.O., Yoo M., Kim W.B. Erectogenic Effect of the Selective Phosphodiesterase Type 5 Inhibitor, DA-8159. Arch. Pharmacal. Res. 2000;23:471–476. doi: 10.1007/BF02976575. PubMed DOI

Keating G.M., Scott L.J. Vardenafil. Drugs. 2003;63:2673–2702. doi: 10.2165/00003495-200363230-00010. PubMed DOI

Jung J.Y., Kim S.K., Kim B.S., Lee S.H., Park Y.S., Kim S.J., Choi C., Yoon S.I., Kim J.S., Cho S.D., et al. The Penile Erection Efficacy of a New Phosphodiesterase Type 5 Inhibitor, Mirodenafil (SK3530), in Rabbits with Acute Spinal Cord Injury. J. Vet. Med. Sci. 2008;70:1199–1204. doi: 10.1292/jvms.70.1199. PubMed DOI

Galieè N., Ghofrani H.A., Torbicki A., Barst R.J., Rubin L.J., Badesch D., Fleming T., Parpia T., Burgess G., Branzi A., et al. Sildenafil Citrate Therapy for Pulmonary Arterial Hypertension. N. Engl. J. Med. 2005;353:2148–2157. doi: 10.1056/NEJMoa050010. PubMed DOI

Azzouni F., Abu samra K. Are Phosphodiesterase Type 5 Inhibitors Associated with Vision-Threatening Adverse Events? A Critical Analysis and Review of the Literature. J. Sex. Med. 2011;8:2894–2903. doi: 10.1111/j.1743-6109.2011.02382.x. PubMed DOI

Khan A.S., Sheikh Z., Khan S., Dwivedi R., Benjamin E. Viagra Deafness—Sensorineural Hearing Loss and Phosphodiesterase-5 Inhibitors. Laryngoscope. 2011;121:1049–1054. doi: 10.1002/lary.21450. PubMed DOI

Wu D., Zhang T., Chen Y., Huang Y., Geng H., Yu Y., Zhang C., Lai Z., Wu Y., Guo X., et al. Discovery and Optimization of Chromeno[2,3-c]pyrrol-9(2H)-ones as Novel Selective and Orally Bioavailable Phosphodiesterase 5 Inhibitors for the Treatment of Pulmonary Arterial Hypertension. J Med Chem. 2017;60:6622–6637. doi: 10.1021/acs.jmedchem.7b00523. PubMed DOI

Patten G.S., Abeywardena M.Y., Bennett L.E. Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families. Crit. Rev. Food Sci. Nutr. 2016;56:181–214. doi: 10.1080/10408398.2011.651176. PubMed DOI

Bullo M., Tschumi S., Bucher B.S., Bianchetti M.G., Simonetti G.D. Pregnancy outcome following exposure to angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists: A systematic review. Hypertension. 2012;60:444–450. doi: 10.1161/HYPERTENSIONAHA.112.196352. PubMed DOI

Dicpinigaitis P.V. Angiotensin-converting enzyme inhibitor-induced cough: ACCP evidence-based clinical practice guidelines. Chest. 2006;129:169S–173S. doi: 10.1378/chest.129.1_suppl.169S. PubMed DOI

Dong J., Xu X., Liang Y., Head R., Bennett L. Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to processing method. Food Funct. 2011;2:310–319. doi: 10.1039/c1fo10023h. PubMed DOI

Balasuriya B.N., Rupasinghe H.V. Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct. Foods Health Dis. 2011;1:172–188.

Liu J.-C., Hsu F.-L., Tsai J.-C., Chan P., Liu J.Y.-H., Thomas G.N., Tomlinson B., Lo M.-Y., Lin J.-Y. Antihypertensive effects of tannins isolated from traditional chinese herbs as non-specific inhibitors of angiontensin converting enzyme. Life Sci. 2003;73:1543–1555. doi: 10.1016/S0024-3205(03)00481-8. PubMed DOI

Daskaya-Dikmen C., Yucetepe A., Karbancioglu-Guler F., Daskaya H., Ozcelik B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants. Nutrients. 2017;9:316. doi: 10.3390/nu9040316. PubMed DOI PMC

Follmer C.J. Ureases as a target for the treatment of gastric and urinary infections. Clin. Pathol. 2010;63:424–430. doi: 10.1136/jcp.2009.072595. PubMed DOI

Hassan S.T., Žemlička M. Plant-Derived Urease Inhibitors as Alternative Chemotherapeutic Agents. Arch Pharm. 2016;349:507–522. doi: 10.1002/ardp.201500019. PubMed DOI

Modolo L.V., de Souza A.X., Horta L.P., Araujo D.P., de Fátima Â. An overview on the potential of natural products as ureases inhibitors: A review. J Adv Res. 2015;6:35–44. doi: 10.1016/j.jare.2014.09.001. PubMed DOI PMC

Rego Y.F., Queiroz M.P., Brito T.O., Carvalho P.G., de Queiroz V.T., de Fátima Â., Macedo F., Jr. A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria. J. Adv. Res. 2018;13:69–100. doi: 10.1016/j.jare.2018.05.003. PubMed DOI PMC

Hameed A., Al-Rashida M., Uroos M., Qazi S.U., Naz S., Ishtiaq M., Khan K.M. A patent update on therapeutic applications of urease inhibitors (2012-2018) Expert Opin. Ther. Pat. 2019;29:181–189. doi: 10.1080/13543776.2019.1584612. PubMed DOI

Hassan S.T., Berchová-Bímová K., Petráš J. Plumbagin, a Plant-Derived Compound, Exhibits Antifungal Combinatory Effect with Amphotericin B against Candida albicans Clinical Isolates and Anti-hepatitis C Virus Activity. Phytother. Res. 2016;30:1487–1492. doi: 10.1002/ptr.5650. PubMed DOI

Calpena E., Deshpande A.A., Yap S., Kumar A., Manning N.J., Bachhawat A.K., Espinós C. New insights into the genetics of 5-oxoprolinase deficiency and further evidence that it is a benign biochemical condition. Eur J Pediatr. 2015;174:407–411. doi: 10.1007/s00431-014-2397-0. PubMed DOI

Mayatepek E., Meissner T., Gröbe H. Acute metabolic crisis with extreme deficiency of glutathione in combination with decreased levels of leukotriene C4 in a patient with glutathione synthetase deficiency. J. Inherit. Metab. Dis. 2004;27:297–299. doi: 10.1023/B:BOLI.0000028843.48467.cb. PubMed DOI

Li X., Ding Y., Liu Y., Ma Y., Song J., Wang Q., Yang Y. Five Chinese patients with 5-oxoprolinuria due to glutathione synthetase and 5-oxoprolinase deficiencies. Brain Dev. 2015;37:952–959. doi: 10.1016/j.braindev.2015.03.005. PubMed DOI

Kirchmair J., Göller A.H., Lang D., Kunze J., Testa B., Wilson I.D., Glen R.C., Schneider G. Predicting drug metabolism: experiment and/or computation? Nat. Rev. Drug Discov. 2015;14:387–404. doi: 10.1038/nrd4581. PubMed DOI

Natesh R., Schwager S.L., Evans H.R., Sturrock E.D., Acharya K.R. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin i-converting enzyme. Biochemistry. 2004;43:8718–8724. doi: 10.1021/bi049480n. PubMed DOI

Balasubramanian A., Ponnuraj K. Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. J. Mol. Biol. 2010;400:274–283. doi: 10.1016/j.jmb.2010.05.009. PubMed DOI

Farrugia M.A., Macomber L., Hausinger R.P. Biosynthesis of the urease metallocenter. J. Biol. Chem. 2013;288:3178–3185. doi: 10.1074/jbc.R112.446526. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...