A Multi-Biochemical and In Silico Study on Anti-Enzymatic Actions of Pyroglutamic Acid against PDE-5, ACE, and Urease Using Various Analytical Techniques: Unexplored Pharmacological Properties and Cytotoxicity Evaluation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31438631
PubMed Central
PMC6770154
DOI
10.3390/biom9090392
PII: biom9090392
Knihovny.cz E-zdroje
- Klíčová slova
- ESI-mass spectrometry, angiotensin-converting enzyme, anti-enzymatic properties, cytotoxicity, phosphodiesterase 5, pyroglutamic acid, urease,
- MeSH
- angiotensin konvertující enzym chemie genetika metabolismus MeSH
- buněčné linie MeSH
- cyklické nukleotidfosfodiesterasy, typ 5 chemie genetika metabolismus MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- inhibiční koncentrace 50 MeSH
- kaptopril chemie metabolismus MeSH
- kyselina pyrrolidonkarboxylová chemie metabolismus toxicita MeSH
- kyseliny hydroxamové antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- rekombinantní proteiny biosyntéza chemie izolace a purifikace MeSH
- sildenafil citrát chemie metabolismus MeSH
- simulace molekulového dockingu MeSH
- spektrofotometrie MeSH
- terciární struktura proteinů MeSH
- ureasa antagonisté a inhibitory metabolismus MeSH
- vazebná místa MeSH
- viabilita buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ACE protein, human MeSH Prohlížeč
- acetohydroxamic acid MeSH Prohlížeč
- angiotensin konvertující enzym MeSH
- cyklické nukleotidfosfodiesterasy, typ 5 MeSH
- kaptopril MeSH
- kyselina pyrrolidonkarboxylová MeSH
- kyseliny hydroxamové MeSH
- PDE5A protein, human MeSH Prohlížeč
- rekombinantní proteiny MeSH
- sildenafil citrát MeSH
- ureasa MeSH
In the current study, pyroglutamic acid (pGlu), a natural amino acid derivative, has efficiently inhibited the catalytic activities of three important enzymes, namely: Human recombinant phosphodiesterase-5A1 (PDE5A1), human angiotensin-converting enzyme (ACE), and urease. These enzymes were reported to be associated with several important clinical conditions in humans. Radioactivity-based assay, spectrophotometric-based assay, and an Electrospray Ionization-Mass Spectrometry-based method were employed to ascertain the inhibitory actions of pGlu against PDE5A1, ACE, and urease, respectively. The results unveiled that pGlu potently suppressed the activity of PDE5A1 (half-maximal inhibitory concentration; IC50 = 5.23 µM) compared with that of standard drug sildenafil citrate (IC50 = 7.14 µM). Moreover, pGlu at a concentration of 20 µg/mL was found to efficiently inhibit human ACE with 98.2% inhibition compared with that of standard captopril (99.6%; 20 µg/mL). The urease-catalyzed reaction was also remarkably inactivated by pGlu and standard acetohydroxamic acid with IC50 values of 1.8 and 3.9 µM, respectively. Remarkably, the outcome of in vitro cytotoxicity assay did not reveal any significant cytotoxic properties of pGlu against human cervical carcinoma cells and normal human fetal lung fibroblast cells. In addition to in vitro assays, molecular docking analyses were performed to corroborate the outcomes of in vitro results with predicted structure-activity relationships. In conclusion, pGlu could be presented as a natural and multifunctional agent with promising applications in the treatment of some ailments connected with the above-mentioned anti-enzymatic properties.
Department of Pharmacy Abdul Wali Khan University Mardan 23200 Pakistan
Museum of literature in Moravia Klášter 1 664 61 Rajhrad Czech Republic
Zobrazit více v PubMed
Patel K., Ahmed Z.S., Huang X., Yang Q., Ekinci E., Neslund-Dudas C.M., Mitra B., Elnady F.A., Ahn Y.H., Yang H., et al. Discovering proteasomal deubiquitinating enzyme inhibitors for cancer therapy: lessons from rational design, nature and old drug reposition. Future Med Chem. 2018;10:2087–2108. doi: 10.4155/fmc-2018-0091. PubMed DOI PMC
Eid H.M., Wright M.L., Anil Kumar N.V., Qawasmeh A., Hassan S.T.S., Mocan A., Nabavi S.M., Rastrelli L., Atanasov A.G., Haddad P.S. Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by Medicinal Plant and Food Ingredients. Front. Pharmacol. 2017;8:387. PubMed PMC
Harvey A.L., Edrada-Ebel R., Quinn R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015;14:111–129. PubMed
Kumar A., Bachhawat A.K. Pyroglutamic acid: Throwing light on a lightly studied metabolite. Curr. Sci. 2012;102:288–297.
Liss D.B., Paden M.S., Schwarz E.S., Mullins M.E. What is the clinical significance of 5-oxoproline (pyroglutamic acid) in high anion gap metabolic acidosis following paracetamol (acetaminophen) exposure? Clin. Toxicol. 2013;51:817–827. doi: 10.3109/15563650.2013.844822. PubMed DOI
Sasaki S., Futagi Y., Kobayashi M., Ogura J., Iseki K. Functional characterization of 5-oxoproline transport via SLC16A1/MCT1. J. Biol. Chem. 2015;290:2303–2311. doi: 10.1074/jbc.M114.581892. PubMed DOI PMC
Yoshinari O., Igarashi K. Anti-diabetic effect of pyroglutamic acid in type 2 diabetic Goto-Kakizaki rats and KK-Ay mice. Br. J. Nutr. 2011;106:995–1004. doi: 10.1017/S0007114511001279. PubMed DOI
Silva A.R., Silva C.G., Ruschel C., Helegda C., Wyse A.T., Wannmacher C.M., Wajner M., Dutra-Filho C.S. L-pyroglutamic acid inhibits energy production and lipid synthesis in cerebral cortex of young rats in vitro. Neurochem. Res. 2001;26:1277–1283. doi: 10.1023/A:1014289232039. PubMed DOI
Corinaldesi C., Di Luigi L., Lenzi A., Crescioli C. Phosphodiesterase type 5 inhibitors: back and forward from cardiac indications. J. Endocrinol. Invest. 2016;39:143–151. doi: 10.1007/s40618-015-0340-5. PubMed DOI PMC
Hamet P., Tremblay J. Platelet cGMP-binding Phosphodiesterase. Methods Enzymol. 1988;159:710–722. PubMed
Francis S.H., Corbin J.D. Purification of cGMP-Binding Protein Phosphodiesterase from Rat Lung. Methods Enzymol. 1988;159:722–729. PubMed
Lin C.S. Tissue Expression, Distribution, and Regulation of PDE5. Int. J. Impotence Res. 2004;16:S8–S10. doi: 10.1038/sj.ijir.3901207. PubMed DOI
Kouvelas D., Goulas A., Papazisis G., Sardeli C., Pourzitaki C. PDE5 Inhibitors: In Vitro and In Vivo Pharmacological Profile. Curr. Pharm. Des. 2009;15:3464–3475. doi: 10.2174/138161209789206971. PubMed DOI
Giordano D., De Stefano M.E., Citro G., Modica A., Giorgi M. Expression of cGMP-Binding cGMP-Specific Phosphodiesterase (PDE5) in Mouse Tissues and Cell Lines Using an Antibody Against the Eenzyme Aamino-Terminal Domain. Biochim. Biophys. Acta Mol. Cell Res. 2001;1539:16–27. PubMed
Regulska K., Stanisz B., Regulski M., Murias M. How to design a potent, specific, and stable angiotensin-converting enzyme inhibitor. Drug Discov. Today. 2014;19:1731–1743. doi: 10.1016/j.drudis.2014.06.026. PubMed DOI
Lever A.F., Hole D.J., Gillis C.R., McCallum I.R., McInnes G.T., MacKinnon P.L., Meredith P.A., Murray L.S., Reid J.L., Robertson J.W. Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet. 1998;352:179–184. doi: 10.1016/S0140-6736(98)03228-0. PubMed DOI
Regulski M., Regulska K., Stanisz B.J., Murias M., Gieremek P., Wzgarda A., Niznik B. Chemistry and pharmacology of Angiotensin-converting enzyme inhibitors. Curr. Pharm. Des. 2015;21:1764–1775. doi: 10.2174/1381612820666141112160013. PubMed DOI
Hassan S.T.S., Švajdlenka E., Rengasamy K.R.R., Melichárková R., Pandian S.K. S. Afr. J. Bot. 2019;120:175–178. doi: 10.1016/j.sajb.2018.04.023. DOI
Kappaun K., Piovesan A.R., Carlini C.R., Ligabue-Braun R. Ureases: Historical aspects, catalytic, and non-catalytic properties - A review. J. Adv. Res. 2018;13:3–17. doi: 10.1016/j.jare.2018.05.010. PubMed DOI PMC
Hassan S.T., Šudomová M. The Development of Urease Inhibitors: What Opportunities Exist for Better Treatment of Helicobacter pylori Infection in Children? Children. 2017;4:2. doi: 10.3390/children4010002. PubMed DOI PMC
Amtul Z., Rahman A.U., Siddiqui R.A., Choudhary M.I. Chemistry and mechanism of urease inhibition. Curr. Med. Chem. 2002;9:1323–1348. doi: 10.2174/0929867023369853. PubMed DOI
Awllia J.A.J., Sara A., Wahab A.-T., Al-Ghamdi M., Rasheed S., Huwait E., Iqbal Choudhary M. Discovery of new inhibitors of urease enzyme: A study using STD-NMR spectroscopy. Lett. Drug Des. Discov. 2015;12:819–827. doi: 10.2174/1570180812666150520001629. DOI
Wang H., Liu Y., Huai Q., Cai J., Zoraghi R., Francis S.H., Corbin J.D., Robinson H., Xin Z., Lin G., et al. Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development. J. Biol. Chem. 2006;281:469–479. doi: 10.1074/jbc.M512527200. PubMed DOI
Shang N.N., Shao Y.X., Cai Y.H., Guan M., Huang M., Cui W., He L., Yu Y.J., Huang L., Li Z., et al. Discovery of 3-(4-Hydroxybenzyl)-1-(thiophen-2-yl)chromeno[2,3-c]pyrrol-9(2H)-one as a Phosphodiesterase-5 Inhibitor and Its Complex Crystal Structure. Biochem. Pharmacol. 2014;89:86–98. doi: 10.1016/j.bcp.2014.02.013. PubMed DOI
Cushman D.W., Cheung H.S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 1971;20:1637–1648. doi: 10.1016/0006-2952(71)90292-9. PubMed DOI
Hassan S.T.S., Švajdlenka E., Berchová-Bímová K. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-enzymatic Properties against Urease by an ESI-MS Based Assay. Molecules. 2017;22:722. doi: 10.3390/molecules22050722. PubMed DOI PMC
Supino R. Methods in molecular biology. In: Hare S., Atterwill C.K., editors. In Vitro Toxicity Testing Protocols. Humana Press; Totowa, NJ, USA: 1995. pp. 137–149.
Hassan S.T.S., Švajdlenka E. Biological evaluation and molecular docking of protocatechuic acid from Hibiscus sabdariffa L. as a potent urease inhibitor by an ESI-MS based method. Molecules. 2017;22:1696. doi: 10.3390/molecules22101696. PubMed DOI PMC
Hassan S.T.S., Šudomová M., Berchová-Bímová K., Gowrishankar S., Rengasamy K.R.R. Antimycobacterial, Enzyme Inhibition, and Molecular Interaction Studies of Psoromic Acid in Mycobacterium tuberculosis: Efficacy and Safety Investigations. J. Clin. Med. 2018;7:226. doi: 10.3390/jcm7080226. PubMed DOI PMC
Dassault Systèmes BIOVIA . Discovery Studio Modeling Environment, Release 2017. Dassault Systèmes; San Diego, CA, USA: 2017.
Oh T.Y., Kang K.K., Ahn B.O., Yoo M., Kim W.B. Erectogenic Effect of the Selective Phosphodiesterase Type 5 Inhibitor, DA-8159. Arch. Pharmacal. Res. 2000;23:471–476. doi: 10.1007/BF02976575. PubMed DOI
Keating G.M., Scott L.J. Vardenafil. Drugs. 2003;63:2673–2702. doi: 10.2165/00003495-200363230-00010. PubMed DOI
Jung J.Y., Kim S.K., Kim B.S., Lee S.H., Park Y.S., Kim S.J., Choi C., Yoon S.I., Kim J.S., Cho S.D., et al. The Penile Erection Efficacy of a New Phosphodiesterase Type 5 Inhibitor, Mirodenafil (SK3530), in Rabbits with Acute Spinal Cord Injury. J. Vet. Med. Sci. 2008;70:1199–1204. doi: 10.1292/jvms.70.1199. PubMed DOI
Galieè N., Ghofrani H.A., Torbicki A., Barst R.J., Rubin L.J., Badesch D., Fleming T., Parpia T., Burgess G., Branzi A., et al. Sildenafil Citrate Therapy for Pulmonary Arterial Hypertension. N. Engl. J. Med. 2005;353:2148–2157. doi: 10.1056/NEJMoa050010. PubMed DOI
Azzouni F., Abu samra K. Are Phosphodiesterase Type 5 Inhibitors Associated with Vision-Threatening Adverse Events? A Critical Analysis and Review of the Literature. J. Sex. Med. 2011;8:2894–2903. doi: 10.1111/j.1743-6109.2011.02382.x. PubMed DOI
Khan A.S., Sheikh Z., Khan S., Dwivedi R., Benjamin E. Viagra Deafness—Sensorineural Hearing Loss and Phosphodiesterase-5 Inhibitors. Laryngoscope. 2011;121:1049–1054. doi: 10.1002/lary.21450. PubMed DOI
Wu D., Zhang T., Chen Y., Huang Y., Geng H., Yu Y., Zhang C., Lai Z., Wu Y., Guo X., et al. Discovery and Optimization of Chromeno[2,3-c]pyrrol-9(2H)-ones as Novel Selective and Orally Bioavailable Phosphodiesterase 5 Inhibitors for the Treatment of Pulmonary Arterial Hypertension. J Med Chem. 2017;60:6622–6637. doi: 10.1021/acs.jmedchem.7b00523. PubMed DOI
Patten G.S., Abeywardena M.Y., Bennett L.E. Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families. Crit. Rev. Food Sci. Nutr. 2016;56:181–214. doi: 10.1080/10408398.2011.651176. PubMed DOI
Bullo M., Tschumi S., Bucher B.S., Bianchetti M.G., Simonetti G.D. Pregnancy outcome following exposure to angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists: A systematic review. Hypertension. 2012;60:444–450. doi: 10.1161/HYPERTENSIONAHA.112.196352. PubMed DOI
Dicpinigaitis P.V. Angiotensin-converting enzyme inhibitor-induced cough: ACCP evidence-based clinical practice guidelines. Chest. 2006;129:169S–173S. doi: 10.1378/chest.129.1_suppl.169S. PubMed DOI
Dong J., Xu X., Liang Y., Head R., Bennett L. Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to processing method. Food Funct. 2011;2:310–319. doi: 10.1039/c1fo10023h. PubMed DOI
Balasuriya B.N., Rupasinghe H.V. Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct. Foods Health Dis. 2011;1:172–188.
Liu J.-C., Hsu F.-L., Tsai J.-C., Chan P., Liu J.Y.-H., Thomas G.N., Tomlinson B., Lo M.-Y., Lin J.-Y. Antihypertensive effects of tannins isolated from traditional chinese herbs as non-specific inhibitors of angiontensin converting enzyme. Life Sci. 2003;73:1543–1555. doi: 10.1016/S0024-3205(03)00481-8. PubMed DOI
Daskaya-Dikmen C., Yucetepe A., Karbancioglu-Guler F., Daskaya H., Ozcelik B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants. Nutrients. 2017;9:316. doi: 10.3390/nu9040316. PubMed DOI PMC
Follmer C.J. Ureases as a target for the treatment of gastric and urinary infections. Clin. Pathol. 2010;63:424–430. doi: 10.1136/jcp.2009.072595. PubMed DOI
Hassan S.T., Žemlička M. Plant-Derived Urease Inhibitors as Alternative Chemotherapeutic Agents. Arch Pharm. 2016;349:507–522. doi: 10.1002/ardp.201500019. PubMed DOI
Modolo L.V., de Souza A.X., Horta L.P., Araujo D.P., de Fátima Â. An overview on the potential of natural products as ureases inhibitors: A review. J Adv Res. 2015;6:35–44. doi: 10.1016/j.jare.2014.09.001. PubMed DOI PMC
Rego Y.F., Queiroz M.P., Brito T.O., Carvalho P.G., de Queiroz V.T., de Fátima Â., Macedo F., Jr. A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria. J. Adv. Res. 2018;13:69–100. doi: 10.1016/j.jare.2018.05.003. PubMed DOI PMC
Hameed A., Al-Rashida M., Uroos M., Qazi S.U., Naz S., Ishtiaq M., Khan K.M. A patent update on therapeutic applications of urease inhibitors (2012-2018) Expert Opin. Ther. Pat. 2019;29:181–189. doi: 10.1080/13543776.2019.1584612. PubMed DOI
Hassan S.T., Berchová-Bímová K., Petráš J. Plumbagin, a Plant-Derived Compound, Exhibits Antifungal Combinatory Effect with Amphotericin B against Candida albicans Clinical Isolates and Anti-hepatitis C Virus Activity. Phytother. Res. 2016;30:1487–1492. doi: 10.1002/ptr.5650. PubMed DOI
Calpena E., Deshpande A.A., Yap S., Kumar A., Manning N.J., Bachhawat A.K., Espinós C. New insights into the genetics of 5-oxoprolinase deficiency and further evidence that it is a benign biochemical condition. Eur J Pediatr. 2015;174:407–411. doi: 10.1007/s00431-014-2397-0. PubMed DOI
Mayatepek E., Meissner T., Gröbe H. Acute metabolic crisis with extreme deficiency of glutathione in combination with decreased levels of leukotriene C4 in a patient with glutathione synthetase deficiency. J. Inherit. Metab. Dis. 2004;27:297–299. doi: 10.1023/B:BOLI.0000028843.48467.cb. PubMed DOI
Li X., Ding Y., Liu Y., Ma Y., Song J., Wang Q., Yang Y. Five Chinese patients with 5-oxoprolinuria due to glutathione synthetase and 5-oxoprolinase deficiencies. Brain Dev. 2015;37:952–959. doi: 10.1016/j.braindev.2015.03.005. PubMed DOI
Kirchmair J., Göller A.H., Lang D., Kunze J., Testa B., Wilson I.D., Glen R.C., Schneider G. Predicting drug metabolism: experiment and/or computation? Nat. Rev. Drug Discov. 2015;14:387–404. doi: 10.1038/nrd4581. PubMed DOI
Natesh R., Schwager S.L., Evans H.R., Sturrock E.D., Acharya K.R. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin i-converting enzyme. Biochemistry. 2004;43:8718–8724. doi: 10.1021/bi049480n. PubMed DOI
Balasubramanian A., Ponnuraj K. Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. J. Mol. Biol. 2010;400:274–283. doi: 10.1016/j.jmb.2010.05.009. PubMed DOI
Farrugia M.A., Macomber L., Hausinger R.P. Biosynthesis of the urease metallocenter. J. Biol. Chem. 2013;288:3178–3185. doi: 10.1074/jbc.R112.446526. PubMed DOI PMC