Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by Medicinal Plant and Food Ingredients

. 2017 ; 8 () : 387. [epub] 20170630

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28713266

Grantová podpora
P 25971 Austrian Science Fund FWF - Austria

Metabolic syndrome is a cluster of three or more metabolic disorders including insulin resistance, obesity, and hyperlipidemia. Obesity has become the epidemic of the twenty-first century with more than 1.6 billion overweight adults. Due to the strong connection between obesity and type 2 diabetes, obesity has received wide attention with subsequent coining of the term "diabesity." Recent studies have identified unique contributions of the immensely diverse gut microbiota in the pathogenesis of obesity and diabetes. Several mechanisms have been proposed including altered glucose and fatty acid metabolism, hepatic fatty acid storage, and modulation of glucagon-like peptide (GLP)-1. Importantly, the relationship between unhealthy diet and a modified gut microbiota composition observed in diabetic or obese subjects has been recognized. Similarly, the role of diet rich in polyphenols and plant polysaccharides in modulating gut bacteria and its impact on diabetes and obesity have been the subject of investigation by several research groups. Gut microbiota are also responsible for the extensive metabolism of polyphenols thus modulating their biological activities. The aim of this review is to shed light on the composition of gut microbes, their health importance and how they can contribute to diseases as well as their modulation by polyphenols and polysaccharides to control obesity and diabetes. In addition, the role of microbiota in improving the oral bioavailability of polyphenols and hence in shaping their antidiabetic and antiobesity activities will be discussed.

Zobrazit více v PubMed

Abeles S. R., Pride D. T. (2014). Molecular bases and role of viruses in the human microbiome. J. Mol. Biol. 426, 3892–3906. 10.1016/j.jmb.2014.07.002 PubMed DOI PMC

Adam A., Levrat-Verny M. A., Lopez H. W., Leuillet M., Demigne C., Remesy C. (2001). Whole wheat and triticale flours with differing viscosities stimulate cecal fermentations and lower plasma and hepatic lipids in rats. J. Nutr. 131, 1770–1776. PubMed

Adam T. C., Westerterp-Plantenga M. S. (2005). Nutrient-stimulated GLP-1 release in normal-weight men and women. Horm. Metab. Res. 37, 111–117. 10.1055/s-2005-861160 PubMed DOI

Afsar B., Elsurer R. (2014). The relationship between central hemodynamics, morning blood pressure surge, glycemic control and sodium intake in patients with type 2 diabetes and essential hypertension. Diabetes Res. Clin. Pract. 104, 420–426. 10.1016/j.diabres.2014.03.011 PubMed DOI

Alberti K. G., Eckel R. H., Grundy S. M., Zimmet P. Z., Cleeman J. I., Donato K. A., et al. . (2009). Harmonizing the metabolic syndrome. Circulation 120:1640. 10.1161/CIRCULATIONAHA.109.192644 PubMed DOI

Andersen D. K., Elahi D., Brown J. C., Tobin J. D., Andres R. (1978). Oral glucose augmentation of insulin secretion. Interactions of gastric inhibitory polypeptide with ambient glucose and insulin levels. J. Clin. Invest. 62, 152–161. 10.1172/JCI109100 PubMed DOI PMC

Anhe F. F., Roy D., Pilon G., Dudonne S., Matamoros S., Varin T. V., et al. . (2015a). A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64, 872–883. 10.1136/gutjnl-2014-307142 PubMed DOI

Anhe F. F., Varin T. V., Le Barz M., Desjardins Y., Levy E., Roy D., et al. . (2015b). Gut microbiota dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts. Curr. Obes. Rep. 4, 389–400. 10.1007/s13679-015-0172-9 PubMed DOI

Backhed F., Ding H., Wang T., Hooper L. V., Koh G. Y., Nagy A., et al. . (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U.S.A. 101, 15718–15723. 10.1073/pnas.0407076101 PubMed DOI PMC

Bäckhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P., et al. . (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703. 10.1016/j.chom.2015.04.004 PubMed DOI

Bahadoran Z., Mirmiran P., Azizi F. (2013). Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J. Diabetes Metab. Disord. 12:43. 10.1186/2251-6581-12-43 PubMed DOI PMC

Baothman O. A., Zamzami M. A., Taher I., Abubaker J., Abu-Farha M. (2016). The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis. 15:108. 10.1186/s12944-016-0278-4 PubMed DOI PMC

Baraldes M. A., Domingo P., Barrio J. L., Pericas R., Gurgui M., Vazquez G. (2000). Meningitis due to Neisseria subflava: case report and review. Clin. Infect. Dis. 30, 615–617. 10.1086/313700 PubMed DOI

Baron E. J., Summanen P., Downes J., Roberts M. C., Wexler H., Finegold S. M. (1989). Bilophila wadsworthia, gen. nov. and sp. nov., a unique gram-negative anaerobic rod recovered from appendicitis specimens and human faeces. J. Gen. Microbiol. 135, 3405–3411. 10.1099/00221287-135-12-3405 PubMed DOI

Bartelt A., Bruns O. T., Reimer R., Hohenberg H., Ittrich H., Peldschus K., et al. . (2011). Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205. 10.1038/nm.2297 PubMed DOI

Beaumont M., Andriamihaja M., Lan A., Khodorova N., Audebert M., Blouin J. M., et al. . (2016). Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: the adaptive response. Free Radic. Biol. Med. 93, 155–164. 10.1016/j.freeradbiomed.2016.01.028 PubMed DOI

Belizário J. E., Napolitano M. (2015). Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front. Microbiol. 6:1050. 10.3389/fmicb.2015.01050 PubMed DOI PMC

Belkaid Y., Hand T. W. (2014). Role of the microbiota in immunity and inflammation. Cell 157, 121–141. 10.1016/j.cell.2014.03.011 PubMed DOI PMC

Belzer C., de Vos W. M. (2012). Microbes inside–from diversity to function: the case of Akkermansia. ISME J. 6, 1449–1458. 10.1038/ismej.2012.6 PubMed DOI PMC

Berding K., Donovan S. M. (2016). Microbiome and nutrition in autism spectrum disorder: current knowledge and research needs. Nutr. Rev. 74, 723–736. 10.1093/nutrit/nuw048 PubMed DOI

Bien J., Palagani V., Bozko P. (2013). The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Therap. Adv. Gastroenterol. 6, 53–68. 10.1177/1756283X12454590 PubMed DOI PMC

Bik E. M., Eckburg P. B., Gill S. R., Nelson K. E., Purdom E. A., Francois F., et al. . (2006). Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl. Acad. Sci. U.S.A. 103, 732–737. 10.1073/pnas.0506655103 PubMed DOI PMC

Bindels L. B., Porporato P., Dewulf E. M., Verrax J., Neyrinck A. M., Martin J. C., et al. . (2012). Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br. J. Cancer 107, 1337–1344. 10.1038/bjc.2012.409 PubMed DOI PMC

Blaut M., Klaus S. (2012). Intestinal microbiota and obesity. Handb. Exp. Pharmacol. 209, 251–273. 10.1007/978-3-642-24716-3_11 PubMed DOI

Boey D., Sainsbury A., Herzog H. (2007). The role of peptide YY in regulating glucose homeostasis. Peptides 28, 390–395. 10.1016/j.peptides.2006.07.031 PubMed DOI

Bratoeva M. P., Wolf M. K., Marks J. K., Cantey J. R. (1994). A case of diarrhea, bacteremia, and fever caused by a novel strain of Escherichia coli. J. Clin. Microbiol. 32, 1383–1386. PubMed PMC

Bronkowska M., Orzel D., Lozna K., Styczynska M., Biernat J., Gryszkin A., et al. . (2013). Effect of resistant starch RS4 added to the high-fat diets on selected biochemical parameters in Wistar rats. Rocz. Panstw. Zakl. Hig. 64, 19–24. PubMed

Callaway E. (2015). Microbiome privacy risk. Nature 521:136. 10.1038/521136a PubMed DOI

Cani P. D., Amar J., Iglesias M. A., Poggi M., Knauf C., Bastelica D., et al. . (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772. 10.2337/db06-1491 PubMed DOI

Cani P. D., Possemiers S., Van de Wiele T., Guiot Y., Everard A., Rottier O., et al. . (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103. 10.1136/gut.2008.165886 PubMed DOI PMC

Caputo A., Lagier J. C., Azza S., Robert C., Mouelhi D., Fournier P. E., et al. . (2016). Microvirga massiliensis sp. nov., the human commensal with the largest genome. Microbiol.Open 5, 307–322. 10.1002/mbo3.329 PubMed DOI PMC

Carding S., Verbeke K., Vipond D. T., Corfe B. M., Owen L. J. (2015). Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26:26191. 10.3402/mehd.v26.26191 PubMed DOI PMC

Cardona F., Andres-Lacueva C., Tulipani S., Tinahones F. J., Queipo-Ortuno M. I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 24, 1415–1422. 10.1016/j.jnutbio.2013.05.001 PubMed DOI

Carmody R. N., Gerber G. K., Luevano J. M., Jr., Gatti D. M., Somes L., Svenson K. L., et al. . (2015). Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17, 72–84. 10.1016/j.chom.2014.11.010 PubMed DOI PMC

Carvalho B. M., Guadagnini D., Tsukumo D. M., Schenka A. A., Latuf-Filho P., Vassallo J., et al. . (2012). Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55, 2823–2834. 10.1007/s00125-012-2648-4 PubMed DOI

Cavicchioli R. (2011). Archaea–timeline of the third domain. Nat. Rev. Microbiol. 9, 51–61. 10.1038/nrmicro2482 PubMed DOI

Chan C., Hyslop C. M., Shrivastava V., Ochoa A., Reimer R. A., Huang C. (2016). Oligofructose as an adjunct in treatment of diabetes in NOD mice. Sci. Rep. 6:37627. 10.1038/srep37627 PubMed DOI PMC

Cherbut C., Ferrier L., Roze C., Anini Y., Blottiere H., Lecannu G., et al. . (1998). Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am. J. Physiol. 275(6 Pt 1), G1415–G1422. PubMed

Chung S., Yao H., Caito S., Hwang J.-W., Arunachalam G., Rahman I. (2010). Regulation of SIRT1 in cellular functions: role of polyphenols. Arch. Biochem. Biophys. 501, 79–90. 10.1016/j.abb.2010.05.003 PubMed DOI PMC

Clarke S. T., Green-Johnson J. M., Brooks S. P., Ramdath D. D., Bercik P., Avila C., et al. . (2016). beta2-1 Fructan supplementation alters host immune responses in a manner consistent with increased exposure to microbial components: results from a double-blinded, randomised, cross-over study in healthy adults. Br. J. Nutr. 115, 1748–1759. 10.1017/S0007114516000908 PubMed DOI

Coppo E., Marchese A. (2014). Antibacterial activity of polyphenols. Curr. Pharm. Biotechnol. 15, 380–390. 10.2174/138920101504140825121142 PubMed DOI

Corless C. E., Guiver M., Borrow R., Edwards-Jones V., Fox A. J., Kaczmarski E. B. (2001). Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J. Clin. Microbiol. 39, 1553–1558. 10.1128/JCM.39.4.1553-1558.2001 PubMed DOI PMC

Cox R. A., Garcia-Palmieri M. R. (1990). Cholesterol, triglycerides, and associated lipoproteins, in Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd Edn., eds Walker H. K., Hall W. D., Hurst J. W. (Boston, MA: Butterworths; ), 153–160.

Cummings J. H., Stephen A. M.. (2007). Carbohydrate terminology and classification. Eur. J. Clin. Nutr. 61(Suppl. 1), S5–S18. 10.1038/sj.ejcn.1602936 PubMed DOI

D'Aimmo M. R., Mattarelli P., Biavati B., Carlsson N. G., Andlid T. (2012). The potential of bifidobacteria as a source of natural folate. J. Appl. Microbiol. 112, 975–984. 10.1111/j.1365-2672.2012.05261.x PubMed DOI

Dalton H. W. (1951). Implantation of B. coli into the human intestine. Ir. J. Med. Sci. 308, 384–386. 10.1007/BF02956866 PubMed DOI

Daubioul C., Rousseau N., Demeure R., Gallez B., Taper H., Declerck B., et al. . (2002). Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats. J. Nutr. 132, 967–973. PubMed

Davis C. P. (1996). Normal flora, in Medical Microbiology, 4th Edn., ed Baron S. (Galveston, TX: University of Texas Medical Branch; ). Available online at: https://www.ncbi.nlm.nih.gov/books/NBK7617/ PubMed

De Angelis M., Piccolo M., Vannini L., Siragusa S., De Giacomo A., Serrazzanetti D. I., et al. . (2013). Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE 8:e76993. 10.1371/journal.pone.0076993 PubMed DOI PMC

de Deckere E. A., Kloots W. J., van Amelsvoort J. M. (1993). Resistant starch decreases serum total cholesterol and triacylglycerol concentrations in rats. J. Nutr. 123, 2142–2151. PubMed

Deacon C. F. (2004). Therapeutic strategies based on glucagon-like peptide 1. Diabetes 53, 2181–2189. 10.2337/diabetes.53.9.2181 PubMed DOI

Delgado S., Cabrera-Rubio R., Mira A., Suarez A., Mayo B. (2013). Microbiological survey of the human gastric ecosystem using culturing and pyrosequencing methods. Microb. Ecol. 65, 763–772. 10.1007/s00248-013-0192-5 PubMed DOI

Delzenne N. M., Cani P. D. (2011). Gut microbiota and the pathogenesis of insulin resistance. Curr. Diabetes Rep. 11, 154–159. 10.1007/s11892-011-0191-1 PubMed DOI

Delzenne N. M., Cani P. D., Daubioul C., Neyrinck A. M. (2005). Impact of inulin and oligofructose on gastrointestinal peptides. Br. J. Nutr. 93(Suppl. 1), S157–S161. 10.1079/bjn20041342 PubMed DOI

Delzenne N. M., Cani P. D., Daubioul C., Neyrinck A. M. (2007). Impact of inulin and oligofructose on gastrointestinal peptides. Br. J. Nutr. 93:S157. 10.1079/BJN20041342 PubMed DOI

Delzenne N. M., Daubioul C., Neyrinck A., Lasa M., Taper H. S. (2002). Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. Br. J. Nutr. 87(Suppl. 2), S255–S259. 10.1079/BJN/2002545 PubMed DOI

den Besten G., Bleeker A., Gerding A., van Eunen K., Havinga R., van Dijk T. H., et al. . (2015). Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARgamma-dependent switch from lipogenesis to fat oxidation. Diabetes 64, 2398–2408. 10.2337/db14-1213 PubMed DOI

den Besten G., Havinga R., Bleeker A., Rao S., Gerding A., van Eunen K., et al. . (2014). The short-chain fatty acid uptake fluxes by mice on a guar gum supplemented diet associate with amelioration of major biomarkers of the metabolic syndrome. PLoS ONE 9:e107392. 10.1371/journal.pone.0107392 PubMed DOI PMC

den Besten G., Lange K., Havinga R., van Dijk T. H., Gerding A., van Eunen K., et al. . (2013a). Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G900–G910. 10.1152/ajpgi.00265.2013 PubMed DOI

den Besten G., van Eunen K., Groen A. K., Venema K., Reijngoud D.-J., Bakker B. M. (2013b). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340. 10.1194/jlr.R036012 PubMed DOI PMC

Denis M. C., Roy D., Yeganeh P. R., Desjardins Y., Varin T., Haddad N., et al. . (2016). Apple peel polyphenols: a key player in the prevention and treatment of experimental inflammatory bowel disease. Clin. Sci. 130, 2217–2237. 10.1042/CS20160524 PubMed DOI

Derrien M., Vaughan E. E., Plugge C. M., de Vos W. M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54(Pt 5), 1469–1476. 10.1099/ijs.0.02873-0 PubMed DOI

Duda-Chodak A., Tarko T., Satora P., Sroka P. (2015). Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur. J. Nutr. 54, 325–341. 10.1007/s00394-015-0852-y PubMed DOI PMC

Duncan S. H., Hold G. L., Harmsen H. J., Stewart C. S., Flint H. J. (2002). Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 52(Pt 6), 2141–2146. 10.1099/00207713-52-6-2141 PubMed DOI

Duranti S., Milani C., Lugli G. A., Mancabelli L., Turroni F., Ferrario C., et al. . (2016). Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis. Sci. Rep. 6:23971. 10.1038/srep23971 PubMed DOI PMC

Edholm T., Degerblad M., Gryback P., Hilsted L., Holst J. J., Jacobsson H., et al. . (2010). Differential incretin effects of GIP and GLP-1 on gastric emptying, appetite, and insulin-glucose homeostasis. Neurogastroenterol. Motil. 22, 1191–1200. 10.1111/j.1365-2982.2010.01554.x PubMed DOI

Eggerth A. H. (1935). The gram-positive non-spore-bearing anaerobic bacilli of human feces. J. Bacteriol. 30, 277–299. PubMed PMC

Eggerth A. H., Gagnon B. H. (1933). The bacteroides of human feces. J. Bacteriol. 25, 389–413. PubMed PMC

Eid H. M., Haddad P. S. (2017). The antidiabetic potential of quercetin: underlying mechanisms. Curr. Med. Chem. 24, 355–364. 10.2174/0929867323666160909153707 PubMed DOI

Eid H. M., Nachar A., Thong F., Sweeney G., Haddad P. S. (2015). The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn. Mag. 11, 74–81. 10.4103/0973-1296.149708 PubMed DOI PMC

Ellinger S., Stehle P. (2016). Impact of cocoa consumption on inflammation processes—a critical review of randomized controlled trials. Nutrients 8:321. 10.3390/nu8060321 PubMed DOI PMC

Engstrand L., Lindberg M. (2013). Helicobacter pylori and the gastric microbiota. Best Pract. Res. Clin. Gastroenterol. 27, 39–45. 10.1016/j.bpg.2013.03.016 PubMed DOI

Etxeberria U., Arias N., Boque N., Macarulla M. T., Portillo M. P., Martinez J. A., et al. . (2015). Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J. Nutr. Biochem. 26, 651–660. 10.1016/j.jnutbio.2015.01.002 PubMed DOI

Evans D. F., Pye G., Bramley R., Clark A. G., Dyson T. J., Hardcastle J. D. (1988). Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29, 1035–1041. 10.1136/gut.29.8.1035 PubMed DOI PMC

Everard A., Belzer C., Geurts L., Ouwerkerk J. P., Druart C., Bindels L. B., et al. . (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. U.S.A. 110, 9066–9071. 10.1073/pnas.1219451110 PubMed DOI PMC

Fagundes Neto U., Patricio F. R., Wehba J., Reis M. H., Gianotti O. F., Trabulsi L. R. (1979). An Escherichia coli strain that causes diarrhea by invasion of the small intestinal mucosa and induces monosaccharide intolerance. Arq. Gastroenterol. 16, 205–208. PubMed

Falcone E. L., Abusleme L., Swamydas M., Lionakis M. S., Ding L., Hsu A. P., et al. . (2016). Colitis susceptibility in p47(phox−/−) mice is mediated by the microbiome. Microbiome 4, 13. 10.1186/s40168-016-0159-0 PubMed DOI PMC

Fändriks L. (2017). Roles of the gut in the metabolic syndrome: an overview. J. Intern. Med. 281, 319–336. 10.1111/joim.12584 PubMed DOI

Finegold S. M., Attebery H. R., Sutter V. L. (1974). Effect of diet on human fecal flora: comparison of Japanese and American diets. Am. J. Clin. Nutr. 27, 1456–1469. PubMed

Forester S. C., Waterhouse A. L. (2010). Gut metabolites of anthocyanins, gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde, inhibit cell proliferation of Caco-2 cells. J. Agric. Food Chem. 58, 5320–5327. 10.1021/jf9040172 PubMed DOI

Freeland K. R., Wolever T. M. (2010). Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. Br. J. Nutr. 103, 460–466. 10.1017/S0007114509991863 PubMed DOI

Fu J., Bonder M. J., Cenit M. C., Tigchelaar E. F., Maatman A., Dekens J. A., et al. . (2015). The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ. Res. 117, 817–824. 10.1161/CIRCRESAHA.115.306807 PubMed DOI PMC

Fukino Y., Shimbo M., Aoki N., Okubo T., Iso H. (2005). Randomized controlled trial for an effect of green tea consumption on insulin resistance and inflammation markers. J. Nutr. Sci. Vitaminol. 51, 335–342. 10.3177/jnsv.51.335 PubMed DOI

Gaci N., Borrel G., Tottey W., O'Toole P. W., Brugere J. F. (2014). Archaea and the human gut: new beginning of an old story. World J. Gastroenterol. 20, 16062–16078. 10.3748/wjg.v20.i43.16062 PubMed DOI PMC

Ganesh B. P., Klopfleisch R., Loh G., Blaut M. (2013). Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS ONE 8:e74963. 10.1371/journal.pone.0074963 PubMed DOI PMC

Gao S., Hu M. (2010). Bioavailability challenges associated with development of anti-cancer phenolics. Mini Rev. Med. Chem. 10, 550–567. 10.2174/138955710791384081 PubMed DOI PMC

Geraylou Z., Souffreau C., Rurangwa E., Maes G. E., Spanier K. I., Courtin C. M., et al. . (2013). Prebiotic effects of arabinoxylan oligosaccharides on juvenile Siberian sturgeon (Acipenser baerii) with emphasis on the modulation of the gut microbiota using 454 pyrosequencing. FEMS Microbiol. Ecol. 86, 357–371. 10.1111/1574-6941.12169 PubMed DOI

Gerritsen J., Smidt H., Rijkers G. T., de Vos W. M. (2011). Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 6, 209–240. 10.1007/s12263-011-0229-7 PubMed DOI PMC

Ghouri Y. A., Richards D. M., Rahimi E. F., Krill J. T., Jelinek K. A., DuPont A. W. (2014). Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin. Exp. Gastroenterol. 7, 473–487. 10.2147/CEG.S27530 PubMed DOI PMC

Gondalia S. V., Palombo E. A., Knowles S. R., Cox S. B., Meyer D., Austin D. W. (2012). Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res. 5, 419–427. 10.1002/aur.1253 PubMed DOI

Gonthier M. P., Verny M. A., Besson C., Remesy C., Scalbert A. (2003). Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J. Nutr. 133, 1853–1859. PubMed

Goodrich J. K., Waters J. L., Poole A. C., Sutter J. L., Koren O., Blekhman R., et al. . (2014). Human genetics shape the gut microbiome. Cell 159, 789–799. 10.1016/j.cell.2014.09.053 PubMed DOI PMC

Grosso G., Stepaniak U., Micek A., Stefler D., Bobak M., Pająk A. (2017). Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur. J. Nutr. 56, 1409–1420. 10.1007/s00394-016-1187-z PubMed DOI PMC

Grundy S. M., Brewer H. B., Cleeman J. I., Smith S. C., Lenfant C. (2004). Definition of metabolic syndrome. Circulation 109:433. 10.1161/01.CIR.0000111245.75752.C6 PubMed DOI

Guarner F., Malagelada J. R. (2003). Gut flora in health and disease. Lancet 361, 512–519. 10.1016/S0140-6736(03)12489-0 PubMed DOI

Hajiaghaalipour F., Khalilpourfarshbafi M., Arya A. (2015). Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int. J. Biol. Sci. 11, 508–524. 10.7150/ijbs.11241 PubMed DOI PMC

Halliwell B., Rafter J., Jenner A. (2005). Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? Am. J. Clin. Nutr. 81(1 Suppl.), 268S–276S. PubMed

Hamilton M. K., Boudry G., Lemay D. G., Raybould H. E. (2015). Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G840–G851. 10.1152/ajpgi.00029.2015 PubMed DOI PMC

Hanhineva K., Torronen R., Bondia-Pons I., Pekkinen J., Kolehmainen M., Mykkanen H., et al. . (2010). Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci. 11, 1365–1402. 10.3390/ijms11041365 PubMed DOI PMC

Hartman A. L., Lough D. M., Barupal D. K., Fiehn O., Fishbein T., Zasloff M., et al. . (2009). Human gut microbiome adopts an alternative state following small bowel transplantation. Proc. Natl. Acad. Sci. U.S.A. 106, 17187–17192. 10.1073/pnas.0904847106 PubMed DOI PMC

Hasegawa H., Sung J. H., Benno Y. (1997). Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med. 63, 436–440. 10.1055/s-2006-957729 PubMed DOI

Hashmi A., Naeem N., Farooq Z., Masood S., Iqbal S., Naseer R. (2016). Effect of prebiotic galacto-oligosaccharides on serum lipid profile of hypercholesterolemics. Probiotics Antimicrob. Proteins 8, 19–30. 10.1007/s12602-016-9206-1 PubMed DOI

Hayashi H., Sakamoto M., Benno Y. (2002). Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol. Immunol. 46, 535–548. 10.1111/j.1348-0421.2002.tb02731.x PubMed DOI

Hayashi H., Shibata K., Sakamoto M., Tomita S., Benno Y. (2007). Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 57(Pt 5), 941–946. 10.1099/ijs.0.64778-0 PubMed DOI

Hayashi H., Takahashi R., Nishi T., Sakamoto M., Benno Y. (2005). Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J. Med. Microbiol. 54(Pt 11), 1093–1101. 10.1099/jmm.0.45935-0 PubMed DOI

Hidalgo M., Oruna-Concha M. J., Kolida S., Walton G. E., Kallithraka S., Spencer J. P., et al. . (2012). Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J. Agric. Food Chem. 60, 3882–3890. 10.1021/jf3002153 PubMed DOI

Hiippala K., Kainulainen V., Kalliomaki M., Arkkila P., Satokari R. (2016). Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp. Front. Microbiol. 7:1706. 10.3389/fmicb.2016.01706 PubMed DOI PMC

Hira T., Ikee A., Kishimoto Y., Kanahori S., Hara H. (2015). Resistant maltodextrin promotes fasting glucagon-like peptide-1 secretion and production together with glucose tolerance in rats. Br. J. Nutr. 114, 34–42. 10.1017/S0007114514004322 PubMed DOI

Holdeman L. V., Good I. J., Moore W. E. (1976). Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl. Environ. Microbiol. 31, 359–375. PubMed PMC

Hollman P. C., de Vries J. H., van Leeuwen S. D., Mengelers M. J., Katan M. B. (1995). Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 62, 1276–1282. PubMed

Holmes E., Loo R. L., Stamler J., Bictash M., Yap I. K., Chan Q., et al. . (2008). Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453, 396–400. 10.1038/nature06882 PubMed DOI PMC

Holst J. J. (2007). The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439. 10.1152/physrev.00034.2006 PubMed DOI

Hong K. B., Kim J. H., Kwon H. K., Han S. H., Park Y., Suh H. J. (2016). Evaluation of prebiotic effects of high-purity galactooligosaccharides in vitro and in vivo. Food Technol. Biotechnol. 54, 156–163. 10.17113/ftb.54.02.16.4292 PubMed DOI PMC

Hong K., Jang K. H., Lee J. C., Kim S., Kim M. K., Lee I. Y., et al. (2005). Bacterial beta-glucan exhibits potent hypoglycemic activity via decrease of serum lipids and adiposity, and increase of UCP mRNA expression. J. Microbiol. Biotechnol. 15:8.

Hooda S., Boler B. M., Serao M. C., Brulc J. M., Staeger M. A., Boileau T. W., et al. . (2012). 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J. Nutr. 142, 1259–1265. 10.3945/jn.112.158766 PubMed DOI

Hooper L., Kroon P. A., Rimm E. B., Cohn J. S., Harvey I., Le Cornu K. A., et al. . (2008). Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 88, 38–50. PubMed

Hopkins M. J., Sharp R., Macfarlane G. T. (2001). Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48, 198–205. 10.1136/gut.48.2.198 PubMed DOI PMC

Horz H. P. (2015). Archaeal lineages within the human microbiome: absent, rare or elusive? Life (Basel) 5, 1333–1345. 10.3390/life5021333 PubMed DOI PMC

Hosseini E., Grootaert C., Verstraete W., Van de Wiele T. (2011). Propionate as a health-promoting microbial metabolite in the human gut. Nutr. Rev. 69, 245–258. 10.1111/j.1753-4887.2011.00388.x PubMed DOI

Hou C. C., Lai C. C., Liu W. L., Chao C. M., Chiu Y. H., Hsueh P. R. (2011). Clinical manifestation and prognostic factors of non-cholerae Vibrio infections. Eur. J. Clin. Microbiol. Infect. Dis. 30, 819–824. 10.1007/s10096-011-1162-9 PubMed DOI

Hoverstad T., Fausa O., Bjorneklett A., Bohmer T. (1984). Short-chain fatty acids in the normal human feces. Scand. J. Gastroenterol. 19, 375–381. PubMed

Hoyles L., Honda H., Logan N. A., Halket G., La Ragione R. M., McCartney A. L. (2012). Recognition of greater diversity of Bacillus species and related bacteria in human faeces. Res. Microbiol. 163, 3–13. 10.1016/j.resmic.2011.10.004 PubMed DOI

Hsu C. K., Liao J. W., Chung Y. C., Hsieh C. P., Chan Y. C. (2004). Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. J. Nutr. 134, 1523–1528. PubMed

Hu Y., Le Leu R. K., Christophersen C. T., Somashekar R., Conlon M. A., Meng X. Q., et al. . (2016). Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats. Carcinogenesis 37, 366–375. 10.1093/carcin/bgw019 PubMed DOI

Hugon P., Lagier J. C., Colson P., Bittar F., Raoult D. (2016). Repertoire of human gut microbes. Microb. Pathog. 106, 103–112. 10.1016/j.micpath.2016.06.020 PubMed DOI

Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214. 10.1038/nature11234 PubMed DOI PMC

Janda J. M., Abbott S. L. (1998). Evolving concepts regarding the genus Aeromonas: an expanding Panorama of species, disease presentations, and unanswered questions. Clin. Infect. Dis. 27, 332–344. 10.1086/514652 PubMed DOI

Janda J. M., Abbott S. L. (2010). The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 23, 35–73. 10.1128/CMR.00039-09 PubMed DOI PMC

Johnston K., Sharp P., Clifford M., Morgan L. (2005). Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Lett. 579, 1653–1657. 10.1016/j.febslet.2004.12.099 PubMed DOI

Kaakoush N. O., Day A. S., Huinao K. D., Leach S. T., Lemberg D. A., Dowd S. E., et al. . (2012). Microbial dysbiosis in pediatric patients with crohn's disease. J. Clin. Microbiol. 50, 3258–3266. 10.1128/JCM.01396-12 PubMed DOI PMC

Kageyama A., Benno Y., Nakase T. (1999). Phylogenetic and phenotypic evidence for the transfer of Eubacterium aerofaciens to the genus Collinsella as Collinsella aerofaciens gen. nov., comb. nov. Int. J. Syst. Bacteriol. 49(Pt 2), 557–565. 10.1099/00207713-49-2-557 PubMed DOI

Kaji I., Karaki S.-I., Kuwahara A. (2014). Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release. Digestion 89, 31–36. 10.1159/000356211 PubMed DOI

Kaliannan K., Wang B., Li X. Y., Kim K. J., Kang J. X. (2015). A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci. Rep. 5:11276. 10.1038/srep11276 PubMed DOI PMC

Kaur J. (2014). A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014:943162. 10.1155/2014/943162 PubMed DOI PMC

Kaushik S. J., Medale F., Fauconneau B., Blanc D. (1989). Effect of digestible carbohydrates on protein/energy utilization and on glucose metabolism in rainbow trout (Salmo gairdneri R.). Aquaculture 79, 63–74. 10.1016/0044-8486(89)90446-8 DOI

Kawabata K., Sugiyama Y., Sakano T., Ohigashi H. (2013). Flavonols enhanced production of anti-inflammatory substance(s) by Bifidobacterium adolescentis: prebiotic actions of galangin, quercetin, and fisetin. Biofactors 39, 422–429. 10.1002/biof.1081 PubMed DOI

Keenan M. J., Zhou J., Hegsted M., Pelkman C., Durham H. A., Coulon D. B., et al. . (2015). Role of resistant starch in improving gut health, adiposity, and insulin resistance. Adv. Nutr. 6, 198–205. 10.3945/an.114.007419 PubMed DOI PMC

Kellett G. L., Helliwell P. A. (2000). The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem. J. 350(Pt 1), 155–162. 10.1042/bj3500155 PubMed DOI PMC

Keshav S. (2006). Paneth cells: leukocyte-like mediators of innate immunity in the intestine. J. Leukoc. Biol. 80, 500–508. 10.1189/jlb.1005556 PubMed DOI

Khurana S., Venkataraman K., Hollingsworth A., Piche M., Tai T. C. (2013). Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5, 3779–3827. 10.3390/nu5103779 PubMed DOI PMC

Kiatpapan P., Murooka Y. (2002). Genetic manipulation system in propionibacteria. J. Biosci. Bioeng. 93, 1–8. 10.1016/S1389-1723(02)80045-7 PubMed DOI

Kieffer T. J., Habener J. F. (1999). The glucagon-like peptides. Endocr. Rev. 20, 876–913. 10.1210/edrv.20.6.0385 PubMed DOI

Knapp B. A., Seeber J., Rief A., Meyer E., Insam H. (2010). Bacterial community composition of the gut microbiota of Cylindroiulus fulviceps (diplopoda) as revealed by molecular fingerprinting and cloning. Folia Microbiol. (Praha). 55, 489–496. 10.1007/s12223-010-0081-y PubMed DOI

Koenig J. E., Spor A., Scalfone N., Fricker A. D., Stombaugh J., Knight R., et al. . (2011). Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl.), 4578–4585. 10.1073/pnas.1000081107 PubMed DOI PMC

Koeth R. A., Wang Z., Levison B. S., Buffa J. A., Org E., Sheehy B. T., et al. . (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585. 10.1038/nm.3145 PubMed DOI PMC

Kok N., Roberfroid M., Delzenne N. (1996). Dietary oligofructose modifies the impact of fructose on hepatic triacylglycerol metabolism. Metab. Clin. Exp. 45, 1547–1550. 10.1016/S0026-0495(96)90186-9 PubMed DOI

Koleva P. T., Valcheva R. S., Sun X., Ganzle M. G., Dieleman L. A. (2012). Inulin and fructo-oligosaccharides have divergent effects on colitis and commensal microbiota in HLA-B27 transgenic rats. Br. J. Nutr. 108, 1633–1643. 10.1017/S0007114511007203 PubMed DOI

Koren O., Spor A., Felin J., Fak F., Stombaugh J., Tremaroli V., et al. . (2011). Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl. 1), 4592–4598. 10.1073/pnas.1011383107 PubMed DOI PMC

Kostic A. D., Gevers D., Pedamallu C. S., Michaud M., Duke F., Earl A. M., et al. . (2012). Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298. 10.1101/gr.126573.111 PubMed DOI PMC

Kumar S., Pandey A. K. (2013). Chemistry and biological activities of flavonoids: an overview. Sci. World J. 2013, 16. 10.1155/2013/162750 PubMed DOI PMC

Kwon O., Eck P., Chen S., Corpe C. P., Lee J. H., Kruhlak M., et al. . (2007). Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J. 21, 366–377. 10.1096/fj.06-6620com PubMed DOI

Lafay S., Gil-Izquierdo A. (2008). Bioavailability of phenolic acids. Phytochem. Rev. 7:301 10.1007/s11101-007-9077-x DOI

Lagier J. C., Armougom F., Million M., Hugon P., Pagnier I., Robert C., et al. . (2012). Microbial culturomics: paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 18, 1185–1193. 10.1111/1469-0691.12023 PubMed DOI

Larrosa M., Gonzalez-Sarrias A., Yanez-Gascon M. J., Selma M. V., Azorin-Ortuno M., Toti S., et al. . (2010). Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J. Nutr. Biochem. 21, 717–725. 10.1016/j.jnutbio.2009.04.012 PubMed DOI

Larsbrink J., Rogers T. E., Hemsworth G. R., McKee L. S., Tauzin A. S., Spadiut O., et al. . (2014). A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506, 498–502. 10.1038/nature12907 PubMed DOI PMC

Larsen N., Vogensen F. K., van den Berg F. W., Nielsen D. S., Andreasen A. S., Pedersen B. K., et al. . (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5:e9085. 10.1371/journal.pone.0009085 PubMed DOI PMC

Lau J. T., Whelan F. J., Herath I., Lee C. H., Collins S. M., Bercik P., et al. . (2016). Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med. 8:72. 10.1186/s13073-016-0327-7 PubMed DOI PMC

Lawson P. A., Finegold S. M. (2015). Reclassification of Ruminococcus obeum as Blautiaobeum comb. nov. Int. J. Syst. Evol. Microbiol. 65, 789–793. 10.1099/ijs.0.000015 PubMed DOI

Le Barz M., Anhe F. F., Varin T. V., Desjardins Y., Levy E., Roy D., et al. . (2015). Probiotics as complementary treatment for metabolic disorders. Diabetes Metab. J. 39, 291–303. 10.4093/dmj.2015.39.4.291 PubMed DOI PMC

Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., et al. . (2013). Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546. 10.1038/nature12506 PubMed DOI

LeBlanc J. G., Milani C., de Giori G. S., Sesma F., van Sinderen D., Ventura M. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 24, 160–168. 10.1016/j.copbio.2012.08.005 PubMed DOI

Ley R. E., Peterson D. A., Gordon J. I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848. 10.1016/j.cell.2006.02.017 PubMed DOI

Li A.-N., Li S., Zhang Y.-J., Xu X.-R., Chen Y.-M., Li H.-B. (2014). Resources and biological activities of natural polyphenols. Nutrients 6, 6020–6047. 10.3390/nu6126020 PubMed DOI PMC

Li X.-X., Wong G. L.-H., To K.-F., Wong V. W.-S., Lai L. H., Chow D. K.-L., et al. . (2009). Bacterial microbiota profiling in gastritis without helicobacter pylori infection or non-steroidal anti-inflammatory drug use. PLoS ONE 4:e7985. 10.1371/journal.pone.0007985 PubMed DOI PMC

Lim M. Y., You H. J., Yoon H. S., Kwon B., Lee J. Y., Lee S., et al. . (2016). The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut. 66, 1031–1038. 10.1136/gutjnl-2015-311326 PubMed DOI

Lin H. V., Frassetto A., Kowalik E. J., Jr., Nawrocki A. R., Lu M. M., Kosinski J. R., et al. . (2012). Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7:e35240. 10.1371/journal.pone.0035240 PubMed DOI PMC

Liu F., Prabhakar M., Ju J., Long H., Zhou H. W. (2016). Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 71, 9–20. 10.1038/ejcn.2016.156 PubMed DOI

Liu T. W., Cephas K. D., Holscher H. D., Kerr K. R., Mangian H. F., Tappenden K. A., et al. . (2016). Nondigestible fructans alter gastrointestinal barrier function, gene expression, histomorphology, and the microbiota profiles of diet-induced obese C57BL/6J mice. J. Nutr. 146, 949–956. 10.3945/jn.115.227504 PubMed DOI

Liu Y. J., Zhan J., Liu X. L., Wang Y., Ji J., He Q. Q. (2014). Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Clin. Nutr. 33, 59–63. 10.1016/j.clnu.2013.03.011 PubMed DOI

Liu Z. M., Chen Y. M., Ho S. C., Ho Y. P., Woo J. (2010). Effects of soy protein and isoflavones on glycemic control and insulin sensitivity: a 6-mo double-blind, randomized, placebo-controlled trial in postmenopausal Chinese women with prediabetes or untreated early diabetes. Am. J. Clin. Nutr. 91, 1394–1401. 10.3945/ajcn.2009.28813 PubMed DOI

Lloyd-Price J., Abu-Ali G., Huttenhower C. (2016). The healthy human microbiome. Genome Med. 8, 51. 10.1186/s13073-016-0307-y PubMed DOI PMC

Loubinoux J., Bronowicki J. P., Pereira I. A., Mougenel J. L., Faou A. E. (2002). Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol. Ecol. 40, 107–112. 10.1111/j.1574-6941.2002.tb00942.x PubMed DOI

Louis P., Young P., Holtrop G., Flint H. J. (2010). Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12, 304–314. 10.1111/j.1462-2920.2009.02066.x PubMed DOI

Lozupone C. A., Stombaugh J. I., Gordon J. I., Jansson J. K., Knight R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230. 10.1038/nature.11550 PubMed DOI PMC

Malaguarnera M., Vacante M., Antic T., Giordano M., Chisari G., Acquaviva R., et al. . (2012). Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig. Dis. Sci. 57, 545–553. 10.1007/s10620-011-1887-4 PubMed DOI

Mao B., Li D., Zhao J., Liu X., Gu Z., Chen Y. Q., et al. . (2015). Metagenomic insights into the effects of fructo-oligosaccharides (FOS) on the composition of fecal microbiota in mice. J. Agric. Food Chem. 63, 856–863. 10.1021/jf505156h PubMed DOI

Marin L., Miguelez E. M., Villar C. J., Lombo F. (2015). Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res. Int. 2015:905215. 10.1155/2015/905215 PubMed DOI PMC

Marquez-Aguirre A. L., Camacho-Ruiz R. M., Gutierrez-Mercado Y. K., Padilla-Camberos E., Gonzalez-Avila M., Galvez-Gastelum F. J., et al. . (2016). Fructans from agave tequilana with a lower degree of polymerization prevent weight gain, hyperglycemia and liver steatosis in high-fat diet-induced obese mice. Plant Foods Hum. Nutr. 71, 416–421. 10.1007/s11130-016-0578-x PubMed DOI PMC

Marshall B. J., Warren J. R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311–1315. 10.1016/S0140-6736(84)91816-6 PubMed DOI

Martinez K. B., Pierre J. F., Chang E. B. (2016). The gut microbiota: the gateway to improved metabolism. Gastroenterol. Clin. North Am. 45, 601–614. 10.1016/j.gtc.2016.07.001 PubMed DOI PMC

Masumoto S., Terao A., Yamamoto Y., Mukai T., Miura T., Shoji T. (2016). Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes. Sci. Rep. 6:31208. 10.1038/srep31208 PubMed DOI PMC

Mestdagh R., Dumas M. E., Rezzi S., Kochhar S., Holmes E., Claus S. P., et al. . (2012). Gut microbiota modulate the metabolism of brown adipose tissue in mice. J. Proteome Res. 11, 620–630. 10.1021/pr200938v PubMed DOI

Minot S., Sinha R., Chen J., Li H., Keilbaugh S. A., Wu G. D., et al. . (2011). The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625. 10.1101/gr.122705.111 PubMed DOI PMC

Miquel S., Martin R., Rossi O., Bermudez-Humaran L. G., Chatel J. M., Sokol H., et al. . (2013). Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 16, 255–261. 10.1016/j.mib.2013.06.003 PubMed DOI

Modler H. W. (1994). Bifidogenic factors—sources, metabolism and applications. Int. Dairy J. 4, 383–407. 10.1016/0958-6946(94)90055-8 DOI

Moore W. E., Holdeman L. V. (1974). Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 27, 961–979. PubMed PMC

Morand C., Levrat M. A., Besson C., Demigne C., Remesy C. (1994). Effects of a diet rich in resistant starch on hepatic lipid metabolism in the rat. J. Nutr. Biochem. 5, 138–144. 10.1016/0955-2863(94)90085-X DOI

Morotomi M., Nagai F., Watanabe Y. (2011). Parasutterella secunda sp. nov., isolated from human faeces and proposal of Sutterellaceae fam. nov. in the order Burkholderiales. Int. J. Syst. Evol. Microbiol. 61(Pt 3), 637–643. 10.1099/ijs.0.023556-0 PubMed DOI

Morotomi M., Nagai F., Watanabe Y. (2012). Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int. J. Syst. Evol. Microbiol. 62(Pt 1), 144–149. 10.1099/ijs.0.026989-0 PubMed DOI

Morotomi M., Nagai F., Watanabe Y., Tanaka R. (2010). Succinatimonas hippei gen. nov., sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 60(Pt 8), 1788–1793. 10.1099/ijs.0.015958-0 PubMed DOI

Morrison D. J., Preston T. (2016). Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200. 10.1080/19490976.2015.1134082 PubMed DOI PMC

Mourembou G., Rathored J., Lekana-Douki J. B., Ndjoyi-Mbiguino A., Khelaifia S., Robert C., et al. . (2016). Description of Gabonibacter massiliensis gen. nov., sp. nov., a new member of the family porphyromonadaceae isolated from the human gut microbiota. Curr. Microbiol. 73, 867–877. 10.1007/s00284-016-1137-2 PubMed DOI

Nadkarni P., Chepurny O. G., Holz G. G. (2014). Regulation of glucose homeostasis by GLP-1. Prog. Mol. Biol. Transl. Sci. 121, 23–65. 10.1016/B978-0-12-800101-1.00002-8 PubMed DOI PMC

Nagai F., Morotomi M., Sakon H., Tanaka R. (2009). Parasutterella excrementihominis gen. nov., sp. nov., a member of the family Alcaligenaceae isolated from human faeces. Int. J. Syst. Evol. Microbiol. 59(Pt 7), 1793–1797. 10.1099/ijs.0.002519-0 PubMed DOI

Nauck M. A., Heimesaat M. M., Orskov C., Holst J. J., Ebert R., Creutzfeldt W. (1993). Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Invest. 91, 301–307. 10.1172/JCI116186 PubMed DOI PMC

Ndongo S., Dubourg G., Khelaifia S., Fournier P. E., Raoult D. (2016a). Christensenella timonensis, a new bacterial species isolated from the human gut. New Microbes New Infect 13, 32–33. 10.1016/j.nmni.2016.05.010 PubMed DOI PMC

Ndongo S., Khelaifia S., Fournier P. E., Raoult D. (2016b). Christensenella massiliensis, a new bacterial species isolated from the human gut. New Microbes New Infect. 12, 69–70. 10.1016/j.nmni.2016.04.014 PubMed DOI PMC

Nettleton J. A., Harnack L. J., Scrafford C. G., Mink P. J., Barraj L. M., Jacobs D. R., Jr. (2006). Dietary flavonoids and flavonoid-rich foods are not associated with risk of type 2 diabetes in postmenopausal women. J. Nutr. 136, 3039–3045. PubMed PMC

Newton D. F., Cummings J. H., Macfarlane S., Macfarlane G. T. (1998). Growth of a human intestinal Desulfovibrio desulfuricans in continuous cultures containing defined populations of saccharolytic and amino acid fermenting bacteria. J. Appl. Microbiol. 85, 372–380. 10.1046/j.1365-2672.1998.00522.x PubMed DOI

Neyrinck A. M., Van Hee V. F., Piront N., De Backer F., Toussaint O., Cani P. D., et al. . (2012). Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr. Diabetes 2:e28. 10.1038/nutd.2011.24 PubMed DOI PMC

O'Hara A. M., Shanahan F. (2006). The gut flora as a forgotten organ. EMBO Rep. 7, 688–693. 10.1038/sj.embor.7400731 PubMed DOI PMC

Olli K., Salli K., Alhoniemi E., Saarinen M., Ibarra A., Vasankari T., et al. . (2015). Postprandial effects of polydextrose on satiety hormone responses and subjective feelings of appetite in obese participants. Nutr. J. 14:2. 10.1186/1475-2891-14-2 PubMed DOI PMC

Ott S. J., Kuhbacher T., Musfeldt M., Rosenstiel P., Hellmig S., Rehman A., et al. . (2008). Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand. J. Gastroenterol. 43, 831–841. 10.1080/00365520801935434 PubMed DOI

Ozdal T., Sela D. A., Xiao J., Boyacioglu D., Chen F., Capanoglu E. (2016). The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8:78. 10.3390/nu8020078 PubMed DOI PMC

Pace N. R. (2006). Time for a change. Nature 441:289. 10.1038/441289a PubMed DOI

Paeschke T. M., Aimutis W. R. (eds.). (2010). Appendix nondigestible carbohydrates: structure and sources, in Nondigestible Carbohydrates and Digestive Health (Ames, IA: Blackwell Publishing Ltd.), 321–329.

Pandey K. B., Rizvi S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2, 270–278. 10.4161/oxim.2.5.9498 PubMed DOI PMC

Parekh P. J., Arusi E., Vinik A. I., Johnson D. A. (2014). The role and influence of gut microbiota in pathogenesis and management of obesity and metabolic syndrome. Front. Endocrinol. 5:47. 10.3389/fendo.2014.00047 PubMed DOI PMC

Parfrey L. W., Walters W. A., Knight R. (2011). Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front. Microbiol. 2:153. 10.3389/fmicb.2011.00153 PubMed DOI PMC

Parkar S. G., Stevenson D. E., Skinner M. A. (2008). The potential influence of fruit polyphenols on colonic microflora and human gut health. Int. J. Food Microbiol. 124, 295–298. 10.1016/j.ijfoodmicro.2008.03.017 PubMed DOI

Parnell J. A., Reimer R. A. (2009). Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am. J. Clin. Nutr. 89, 1751–1759. 10.3945/ajcn.2009.27465 PubMed DOI PMC

Peirce V., Vidal-Puig A. (2013). Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes Endocrinol. 1, 353–360. 10.1016/S2213-8587(13)70055-X PubMed DOI

Pereira D. M., Valentão P., Pereira J. A., Andrade P. B. (2009). Phenolics: from chemistry to biology. Molecules 14, 2202–2211. 10.3390/molecules14062202 DOI

Piche T., des Varannes S. B., Sacher-Huvelin S., Holst J. J., Cuber J. C., Galmiche J. P. (2003). Colonic fermentation influences lower esophageal sphincter function in gastroesophageal reflux disease. Gastroenterology 124, 894–902. 10.1053/gast.2003.50159 PubMed DOI

Pyra K. A., Saha D. C., Reimer R. A. (2012). Prebiotic fiber increases hepatic acetyl CoA carboxylase phosphorylation and suppresses glucose-dependent insulinotropic polypeptide secretion more effectively when used with metformin in obese rats. J. Nutr. 142, 213–220. 10.3945/jn.111.147132 PubMed DOI PMC

Qiao Y., Sun J., Xia S., Tang X., Shi Y., Le G. (2014). Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct. 5, 1241–1249. 10.1039/c3fo60630a PubMed DOI

Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., et al. . (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65. 10.1038/nature08821 PubMed DOI PMC

Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F., et al. . (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60. 10.1038/nature11450 PubMed DOI

Quigley E. M. (2013). Gut bacteria in health and disease. Gastroenterol. Hepatol. 9, 560–569. PubMed PMC

Rajilic-Stojanovic M., de Vos W. M. (2014). The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047. 10.1111/1574-6976.12075 PubMed DOI PMC

Rajilic-Stojanovic M., Shanahan F., Guarner F., de Vos W. M. (2013). Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm. Bowel Dis. 19, 481–488. 10.1097/MIB.0b013e31827fec6d PubMed DOI

Rajilic-Stojanovic M., Smidt H., de Vos W. M. (2007). Diversity of the human gastrointestinal tract microbiota revisited. Environ. Microbiol. 9, 2125–2136. 10.1111/j.1462-2920.2007.01369.x PubMed DOI

Rajpal D. K., Klein J. L., Mayhew D., Boucheron J., Spivak A. T., Kumar V., et al. . (2015). Selective spectrum antibiotic modulation of the gut microbiome in obesity and diabetes rodent models. PLoS ONE 10:e0145499. 10.1371/journal.pone.0145499 PubMed DOI PMC

Ramasamy D., Lagier J. C., Nguyen T. T., Raoult D., Fournier P. E. (2013). Non contiguous-finished genome sequence and description of Dielma fastidiosa gen. nov., sp. nov., a new member of the Family Erysipelotrichaceae. Stand. Genomic Sci. 8, 336–351. 10.4056/sigs.3567059 PubMed DOI PMC

Ramirez-Farias C., Slezak K., Fuller Z., Duncan A., Holtrop G., Louis P. (2009). Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr. 101, 541–550. 10.1017/S0007114508019880 PubMed DOI

Rehman A., Rausch P., Wang J., Skieceviciene J., Kiudelis G., Bhagalia K., et al. . (2016). Geographical patterns of the standing and active human gut microbiome in health and IBD. Gut 65, 238–248. 10.1136/gutjnl-2014-308341 PubMed DOI

Reiser S. (1985). Effect of dietary sugars on metabolic risk factors associated with heart disease. Nutr. Health 3, 203–216. PubMed

Rendon-Huerta J. A., Juarez-Flores B., Pinos-Rodriguez J. M., Aguirre-Rivera J. R., Delgado-Portales R. E. (2012). Effects of different sources of fructans on body weight, blood metabolites and fecal bacteria in normal and obese non-diabetic and diabetic rats. Plant Foods Hum. Nutr. 67, 64–70. 10.1007/s11130-011-0266-9 PubMed DOI

Rial S. A., Karelis A. D., Bergeron K.-F., Mounier C. (2016). Gut microbiota and metabolic health: the potential beneficial effects of a medium chain triglyceride diet in obese individuals. Nutrients 8:281. 10.3390/nu8050281 PubMed DOI PMC

Richards A. L., Burns M. B., Alazizi A., Barreiro L. B., Pique-Regi R., Blekhman R., et al. . (2016). Genetic and transcriptional analysis of human host response to healthy gut microbiota. mSystems 1:e00067–16. 10.1128/mSystems.00067-16 PubMed DOI PMC

Riviere A., Selak M., Lantin D., Leroy F., De Vuyst L. (2016). Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7:979. 10.3389/fmicb.2016.00979 PubMed DOI PMC

Roberfroid M., Gibson G. R., Hoyles L., McCartney A. L., Rastall R., Rowland I., et al. . (2010). Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104(Suppl. 2), S1–S63. 10.1017/s0007114510003363 PubMed DOI

Roopchand D. E., Carmody R. N., Kuhn P., Moskal K., Rojas-Silva P., Turnbaugh P. J., et al. . (2015). Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 64, 2847–2858. 10.2337/db14-1916 PubMed DOI PMC

Rosenbaum M., Knight R., Leibel R. L. (2015). The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol. Metab. 26, 493–501. 10.1016/j.tem.2015.07.002 PubMed DOI PMC

Russell W. R., Labat A., Scobbie L., Duncan G. J., Duthie G. G. (2009). Phenolic acid content of fruits commonly consumed and locally produced in Scotland. Food Chem. 115, 100–104. 10.1016/j.foodchem.2008.11.086 DOI

Russo F., Chimienti G., Riezzo G., Pepe G., Petrosillo G., Chiloiro M., et al. . (2008). Inulin-enriched pasta affects lipid profile and Lp(a) concentrations in Italian young healthy male volunteers. Eur. J. Nutr. 47, 453–459. 10.1007/s00394-008-0748-1 PubMed DOI

Sakamoto M., Benno Y. (2006). Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int. J. Syst. Evol. Microbiol. 56(Pt 7), 1599–1605. 10.1099/ijs.0.64192-0 PubMed DOI

Sakamoto M., Ohkuma M. (2012). Reclassification of Xylanibacter oryzae Ueki et al. 2006 as Prevotella oryzae comb. nov., with an emended description of the genus Prevotella. Int. J. Syst. Evol. Microbiol. 62(Pt 11), 2637–2642. 10.1099/ijs.0.038638-0 PubMed DOI

Salazar N., Dewulf E. M., Neyrinck A. M., Bindels L. B., Cani P. D., Mahillon J., et al. . (2015). Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin. Nutr. 34, 501–507. 10.1016/j.clnu.2014.06.001 PubMed DOI

Samuel B. S., Hansen E. E., Manchester J. K., Coutinho P. M., Henrissat B., Fulton R., et al. . (2007). Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc. Natl. Acad. Sci. U.S.A. 104, 10643–10648. 10.1073/pnas.0704189104 PubMed DOI PMC

Santacruz A., Collado M. C., Garcia-Valdes L., Segura M. T., Martin-Lagos J. A., Anjos T., et al. . (2010). Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 104, 83–92. 10.1017/S0007114510000176 PubMed DOI

Scalbert A., Manach C., Morand C., Remesy C., Jimenez L. (2005). Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 45, 287–306. 10.1080/1040869059096 PubMed DOI

Scarpellini E., Ianiro G., Attili F., Bassanelli C., De Santis A., Gasbarrini A. (2015). The human gut microbiota and virome: potential therapeutic implications. Digest. Liver Dis. 47, 1007–1012. 10.1016/j.dld.2015.07.008 PubMed DOI PMC

Schaefer E. J., Gleason J. A., Dansinger M. L. (2009). Dietary fructose and glucose differentially affect lipid and glucose homeostasis. J. Nutr. 139, 1257S–1262S. 10.3945/jn.108.098186 PubMed DOI PMC

Schneeberger M., Everard A., Gómez-Valadés A. G., Matamoros S., Ramírez S., Delzenne N. M., et al. . (2015). Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci. Rep. 5:16643. 10.1038/srep16643 PubMed DOI PMC

Selma M. V., Espin J. C., Tomas-Barberan F. A. (2009). Interaction between phenolics and gut microbiota: role in human health. J. Agric. Food Chem. 57, 6485–6501. 10.1021/jf902107d PubMed DOI

Shi Y. C., Loh K., Bensellam M., Lee K., Zhai L., Lau J., et al. . (2015). Pancreatic PYY is critical in the control of insulin secretion and glucose homeostasis in female mice. Endocrinology 156, 3122–3136. 10.1210/en.2015-1168 PubMed DOI

Shin N. R., Whon T. W., Bae J. W. (2015). Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503. 10.1016/j.tibtech.2015.06.011 PubMed DOI

Shrime M. G., Bauer S. R., McDonald A. C., Chowdhury N. H., Coltart C. E., Ding E. L. (2011). Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies. J. Nutr. 141, 1982–1988. 10.3945/jn.111.145482 PubMed DOI

Smith M. I., Yatsunenko T., Manary M. J., Trehan I., Mkakosya R., Cheng J., et al. . (2013). Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554. 10.1126/science.1229000 PubMed DOI PMC

Sokol H., Leducq V., Aschard H., Pham H. P., Jegou S., Landman C., et al. . (2016). Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048. 10.1136/gutjnl-2015-310746 PubMed DOI PMC

Song Y., Kononen E., Rautio M., Liu C., Bryk A., Eerola E., et al. . (2006). Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. Int. J. Syst. Evol. Microbiol. 56(Pt 8), 1985–1990. 10.1099/ijs.0.64318-0 PubMed DOI

Song Y., Manson J. E., Buring J. E., Sesso H. D., Liu S. (2005). Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. J. Am. Coll. Nutr. 24, 376–384. 10.1080/07315724.2005.10719488 PubMed DOI

Stanford K. I., Middelbeek R. J., Townsend K. L., An D., Nygaard E. B., Hitchcox K. M., et al. . (2013). Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Invest. 123, 215–223. 10.1172/JCI62308 PubMed DOI PMC

Stephen A. M., Cummings J. H. (1980). The microbial contribution to human faecal mass. J. Med. Microbiol. 13, 45–56. 10.1099/00222615-13-1-45 PubMed DOI

Stevens J. F., Maier C. S. (2016). The chemistry of gut microbial metabolism of polyphenols. Phytochem. Rev. 15, 425–444. 10.1007/s11101-016-9459-z PubMed DOI PMC

Swidsinski A., Dorffel Y., Loening-Baucke V., Tertychnyy A., Biche-Ool S., Stonogin S., et al. . (2012). Mucosal invasion by fusobacteria is a common feature of acute appendicitis in Germany, Russia, and China. Saudi J. Gastroenterol. 18, 55–58. 10.4103/1319-3767.91734 PubMed DOI PMC

Tang W. H., Wang Z., Levison B. S., Koeth R. A., Britt E. B., Fu X., et al. . (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584. 10.1056/NEJMoa1109400 PubMed DOI PMC

Taras D., Simmering R., Collins M. D., Lawson P. A., Blaut M. (2002). Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 52(Pt 2), 423–428. 10.1099/00207713-52-2-423 PubMed DOI

Thilakarathna S. H., Rupasinghe H. P. (2013). Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5, 3367–3387. 10.3390/nu5093367 PubMed DOI PMC

Thilesen C. M., Nicolaidis M., Lokebo J. E., Falsen E., Jorde A. T., Muller F. (2007). Leptotrichia amnionii, an emerging pathogen of the female urogenital tract. J. Clin. Microbiol. 45, 2344–2347. 10.1128/JCM.00167-07 PubMed DOI PMC

Tilg H., Moschen A. R. (2014). Microbiota and diabetes: an evolving relationship. Gut 63, 1513–1521. 10.1136/gutjnl-2014-306928 PubMed DOI

Tsao R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients 2, 1231–1246. 10.3390/nu2121231 PubMed DOI PMC

Turnbaugh P. J., Hamady M., Yatsunenko T., Cantarel B. L., Duncan A., Ley R. E., et al. . (2009). A core gut microbiome in obese and lean twins. Nature 457, 480–484. 10.1038/nature07540 PubMed DOI PMC

Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031. 10.1038/nature05414 PubMed DOI

Umeno A., Horie M., Murotomi K., Nakajima Y., Yoshida Y. (2016). Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 21:708. 10.3390/molecules21060708 PubMed DOI PMC

Unemo M., Golparian D., Hellmark B. (2014). First three Neisseria gonorrhoeae isolates with high-level resistance to azithromycin in Sweden: a threat to currently available dual-antimicrobial regimens for treatment of gonorrhea? Antimicrob. Agents Chemother. 58, 624–625. 10.1128/AAC.02093-13 PubMed DOI PMC

Ursell L. K., Clemente J. C., Rideout J. R., Gevers D., Caporaso J. G., Knight R. (2012). The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J. Allergy Clin. Immunol. 129, 1204–1208. 10.1016/j.jaci.2012.03.010 PubMed DOI PMC

Vaahtovuo J., Korkeamaki M., Munukka E., Viljanen M. K., Toivanen P. (2005). Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry. J. Microbiol. Methods 63, 276–286. 10.1016/j.mimet.2005.03.017 PubMed DOI

Valsecchi C., Carlotta Tagliacarne S., Castellazzi A. (2016). Gut microbiota and obesity. J. Clin. Gastroenterol. 50(Suppl. 2), S157–S158. 10.1097/mcg.0000000000000715 PubMed DOI

Van den Abbeele P., Gerard P., Rabot S., Bruneau A., El Aidy S., Derrien M., et al. . (2011). Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environ. Microbiol. 13, 2667–2680. 10.1111/j.1462-2920.2011.02533.x PubMed DOI

Van Houte J., Gibbons R. J. (1966). Studies of the cultivable flora of normal human feces. Antonie Van Leeuwenhoek 32, 212–222. 10.1007/BF02097463 PubMed DOI

Vinayagam R., Xu B. (2015). Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr. Metab. 12:60. 10.1186/s12986-015-0057-7 PubMed DOI PMC

Vrieze A., Van Nood E., Holleman F., Salojärvi J., Kootte R. S., Bartelsman J. F. W. M., et al. . (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913.e917–916.e917. 10.1053/j.gastro.2012.06.031 PubMed DOI

Walter J., Margosch D., Hammes P. W., Hertel C. (2002). Detection of fusobacterium species in human feces using genus-specific PCR primers and denaturing gradient gel electrophoresis. Microb. Ecol. Health Dis. 14, 129–132. 10.1080/089106002320644294 DOI

Walters W. A., Xu Z., Knight R. (2014). Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 588, 4223–4233. 10.1016/j.febslet.2014.09.039 PubMed DOI PMC

Walther W. W., Millwood E. G. (1951). Presence of certain serological types of Bact. coli in the human intestine. Br. Med. J. 2, 156–157. 10.1136/bmj.2.4724.156 PubMed DOI PMC

Wang D., Ho L., Faith J., Ono K., Janle E. M., Lachcik P. J., et al. . (2015). Role of intestinal microbiota in the generation of polyphenol derived phenolic acid mediated attenuation of Alzheimer's disease β-amyloid oligomerization. Mol. Nutr. Food Res. 59, 1025–1040. 10.1002/mnfr.201400544 PubMed DOI PMC

Wang H. X., Wang Y. P. (2016). Gut microbiota-brain axis. Chin. Med. J. 129, 2373–2380. 10.4103/0366-6999.190667 PubMed DOI PMC

Wang M., Ahrne S., Jeppsson B., Molin G. (2005). Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol. Ecol. 54, 219–231. 10.1016/j.femsec.2005.03.012 PubMed DOI

Wang S., Moustaid-Moussa N., Chen L., Mo H., Shastri A., Su R., et al. . (2014). Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem. 25, 1–18. 10.1016/j.jnutbio.2013.09.001 PubMed DOI PMC

Wang X., Liu H., Chen J., Li Y., Qu S. (2015). Multiple factors related to the secretion of glucagon-like peptide-1. Int. J. Endocrinol. 2015:651757. 10.1155/2015/651757 PubMed DOI PMC

Wang Z., Klipfell E., Bennett B. J., Koeth R., Levison B. S., Dugar B., et al. . (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63. 10.1038/nature09922 PubMed DOI PMC

Wexler H. M. (2007). Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621. 10.1128/CMR.00008-07 PubMed DOI PMC

Wexler H. M., Reeves D., Summanen P. H., Molitoris E., McTeague M., Duncan J., et al. . (1996). Sutterella wadsworthensis gen. nov., sp. nov., bile-resistant microaerophilic Campylobacter gracilis-like clinical isolates. Int. J. Syst. Bacteriol. 46, 252–258. 10.1099/00207713-46-1-252 PubMed DOI

Williams C. M. (1999). Effects of inulin on lipid parameters in humans. J. Nutr. 129(7 Suppl.), 1471S–1473S. PubMed

Williamson G. (2013). Possible effects of dietary polyphenols on sugar absorption and digestion. Mol. Nutr. Food Res. 57, 48–57. 10.1002/mnfr.201200511 PubMed DOI

Woese C. R., Kandler O., Wheelis M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. U.S.A. 87, 4576–4579. 10.1073/pnas.87.12.4576 PubMed DOI PMC

Woods M., Gorbach S. (2001). Influences of fiber on the ecology of the intestinal flora, in CRC Handbook of Dietary Fiber in Human Nutrition, 3rd Edn., ed Spiller G. A. (CRC Press; ), 257–270.

Wroblewski L. E., Peek R. M., Jr. (2016). Helicobacter pylori, cancer, and the gastric microbiota. Adv. Exp. Med. Biol. 908, 393–408. 10.1007/978-3-319-41388-4_19 PubMed DOI

Wu G. D., Chen J., Hoffmann C., Bittinger K., Chen Y. Y., Keilbaugh S. A., et al. . (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108. 10.1126/science.1208344 PubMed DOI PMC

Wu T., Yang Y., Zhang L., Han J. (2010). [Systematic review of the effects of inulin-type fructans on blood lipid profiles: a meta-analysis]. Wei Sheng Yan Jiu 39, 172–176. PubMed

Wylie K. M., Mihindukulasuriya K. A., Zhou Y., Sodergren E., Storch G. A., Weinstock G. M. (2014). Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol. 12:71. 10.1186/s12915-014-0071-7 PubMed DOI PMC

Xu J., Bjursell M. K., Himrod J., Deng S., Carmichael L. K., Chiang H. C., et al. . (2003). A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076. 10.1126/science.1080029 PubMed DOI

Xu J., Mahowald M. A., Ley R. E., Lozupone C. A., Hamady M., Martens E. C., et al. . (2007). Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 5:e156. 10.1371/journal.pbio.0050156 PubMed DOI PMC

Yabe D., Seino Y. (2011). Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and beta cell preservation. Prog. Biophys. Mol. Biol. 107, 248–256. 10.1016/j.pbiomolbio.2011.07.010 PubMed DOI

Yamaguchi Y., Adachi K., Sugiyama T., Shimozato A., Ebi M., Ogasawara N., et al. . (2016). Association of intestinal microbiota with metabolic markers and dietary habits in patients with type 2 diabetes. Digestion 94, 66–72. 10.1159/000447690 PubMed DOI

Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., et al. . (2012). Human gut microbiome viewed across age and geography. Nature 486, 222–227. 10.1038/nature11053 PubMed DOI PMC

Ze X., Duncan S. H., Louis P., Flint H. J. (2012). Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543. 10.1038/ismej.2012.4 PubMed DOI PMC

Zhang W., Gu Y., Chen Y., Deng H., Chen L., Chen S., et al. . (2010). Intestinal flora imbalance results in altered bacterial translocation and liver function in rats with experimental cirrhosis. Eur. J. Gastroenterol. Hepatol. 22, 1481–1486. 10.1097/meg.0b013e32833eb8b0 PubMed DOI

Zhang Y., Zhang H. (2013). Microbiota associated with type 2 diabetes and its related complications. Food Sci. Hum. Wellness 2, 167–172. 10.1016/j.fshw.2013.09.002 DOI

Zilberstein B., Quintanilha A. G., Santos M. A., Pajecki D., Moura E. G., Alves P. R., et al. . (2007). Digestive tract microbiota in healthy volunteers. Clinics (Sao Paulo) 62, 47–54. 10.1590/S1807-59322007000100008 PubMed DOI

Zoetendal E. G., Raes J., van den Bogert B., Arumugam M., Booijink C. C., Troost F. J., et al. . (2012). The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 6, 1415–1426. 10.1038/ismej.2011.212 PubMed DOI PMC

Zou S., Caler L., Colombini-Hatch S., Glynn S., Srinivas P. (2016). Research on the human virome: where are we and what is next. Microbiome 4:32. 10.1186/s40168-016-0177-y PubMed DOI PMC

Zubrzycki L., Spaulding E. H. (1962). Studies on the stability of the normal human fecal flora. J. Bacteriol. 83, 968–974. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...