Uncovering the Interrelation between Metabolite Profiles and Bioactivity of In Vitro- and Wild-Grown Catmint (Nepeta nuda L.)
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
KP-06-N56/9/12.11.2021
Bulgarian Science Fund
BG05M2OP001-1.002-0012
Operational Program Science and Education for Smart Growth 2014-2020 co-financed by the European Union through the European Structural and Investment Funds, and by the Bulgarian Ministry of Education and Science
PubMed
37887424
PubMed Central
PMC10609352
DOI
10.3390/metabo13101099
PII: metabo13101099
Knihovny.cz E-resources
- Keywords
- GC-MS, Nepeta nuda, bioactivity, metabolites, phytohormones, volatiles,
- Publication type
- Journal Article MeSH
Nepeta nuda L. is a medicinal plant enriched with secondary metabolites serving to attract pollinators and deter herbivores. Phenolics and iridoids of N. nuda have been extensively investigated because of their beneficial impacts on human health. This study explores the chemical profiles of in vitro shoots and wild-grown N. nuda plants (flowers and leaves) through metabolomic analysis utilizing gas chromatography and mass spectrometry (GC-MS). Initially, we examined the differences in the volatiles' composition in in vitro-cultivated shoots comparing them with flowers and leaves from plants growing in natural environment. The characteristic iridoid 4a-α,7-β,7a-α-nepetalactone was highly represented in shoots of in vitro plants and in flowers of plants from nature populations, whereas most of the monoterpenes were abundant in leaves of wild-grown plants. The known in vitro biological activities encompassing antioxidant, antiviral, antibacterial potentials alongside the newly assessed anti-inflammatory effects exhibited consistent associations with the total content of phenolics, reducing sugars, and the identified metabolic profiles in polar (organic acids, amino acids, alcohols, sugars, phenolics) and non-polar (fatty acids, alkanes, sterols) fractions. Phytohormonal levels were also quantified to infer the regulatory pathways governing phytochemical production. The overall dataset highlighted compounds with the potential to contribute to N. nuda bioactivity.
Department of Agrobiotechnology Agrobioinstitute Agricultural Academy 1164 Sofia Bulgaria
Department of Biochemistry Faculty of Biology Sofia University 1164 Sofia Bulgaria
Department of Biophysics and Radiobiology Faculty of Biology Sofia University 1164 Sofia Bulgaria
See more in PubMed
Shao H.B., Chu L.Y., Shao M.A., Jaleel C.A., Mi H.M. Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biol. 2008;331:433–441. doi: 10.1016/j.crvi.2008.03.011. PubMed DOI
Kilic O., Hayta S., Bagci E. Chemical composition of essential oil of Nepeta nuda L. subsp. nuda (Lamiaceae) from Turkey. Asian J. Chem. 2011;23:2788–2790.
Alekseeva M., Rusanova M., Rusanov K., Atanassov I. A set of highly polymorphic microsatellite markers for genetic diversity studies in the genus Origanum. Plants. 2023;12:824. doi: 10.3390/plants12040824. PubMed DOI PMC
Aćimović M., Lončar B., Pezo M., Stanković Jeremić J., Cvetković M., Rat M., Pezo L. Volatile compounds of Nepeta nuda L. from Rtanj Mountain (Serbia) Horticulturae. 2022;8:85. doi: 10.3390/horticulturae8020085. DOI
Aničić N., Matekalo D., Skorić M., Živković J.N., Petrović L., Dragićević M., Dmitrović S., Mišić D. Alterations in nepetalactone metabolism during polyethylene glycol (PEG)-induced dehydration stress in two Nepeta species. Phytochemistry. 2020;174:112340. doi: 10.1016/j.phytochem.2020.112340. PubMed DOI
Kofidis G., Bosabalidis A.M. Effects of altitude and season on glandular hairs and leaf structural traits of Nepeta nuda L. Bot. Stud. 2008;49:363–372.
Eisner T. Catnip: Its raison d’être. Science. 1964;146:1318–1320. doi: 10.1126/science.146.3649.1318. PubMed DOI
Bozek M. Pollen efficiency and foraging by insect pollinators in three catnip (Nepeta L.) species. J. Apic. Sci. 2003;47:19–24.
Uenoyama R., Miyazaki T., Hurst J.L., Beynon R.J., Adachi M., Murooka T., Onoda I., Miyazawa Y., Katayama R., Yamashita T., et al. The characteristic response of domestic cats to plant iridoids allows them to gain chemical defense against mosquitoes. Sci. Adv. 2021;7:eabd9135. doi: 10.1126/sciadv.abd9135. PubMed DOI PMC
Petrova D., Gašić U., Yocheva L., Hinkov A., Yordanova Z., Chaneva G., Mantovska D., Paunov M., Ivanova L., Rogova M., et al. Catmint (Nepeta nuda L.) phylogenetics and metabolic responses in variable growth conditions. Front. Plant Sci. 2022;13:866777. doi: 10.3389/fpls.2022.866777. PubMed DOI PMC
Murashige T., Skoog F.A. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectorscopy. 4th ed. Allured Pub. Corp.; Carol Stream, IL, USA: 2007.
Mantovska D.I., Zhiponova M.K., Georgiev M.I., Alipieva K., Tsacheva I., Simova S., Yordanova Z.P. Biological Activity and NMR-Fingerprinting of Balkan endemic species Stachys thracica Davidov. Metabolites. 2022;12:251. doi: 10.3390/metabo12030251. PubMed DOI PMC
Lindoo S.J., Caldwell M.M. Ultraviolet-B radiation-induced inhibition of leaf expansion and promotion of anthocyanin production: Lack of involvement of the low irradiance phytochrome system. Plant Physiol. 1978;61:278–282. doi: 10.1104/pp.61.2.278. PubMed DOI PMC
Plummer D.T. Biochemical Education. 3rd ed. Volume 16. McGraw-Hill College; London, UK: 1988. An introduction to practical biochemistry; pp. 98–100.
Prerostova S., Dobrev P.I., Knirsch V., Jarosova J., Gaudinova A., Zupkova B., Prášil I.T., Janda T., Brzobohatý B., Skalák J., et al. Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci. 2021;22:2736. doi: 10.3390/ijms22052736. PubMed DOI PMC
Mishev K., Dobrev P.I., Lacek J., Filepová R., Yuperlieva-Mateeva B., Kostadinova A., Hristeva T. Hormonomic changes driving the negative impact of broomrape on plant host interactions with arbuscular mycorrhizal fungi. Int. J. Mol. Sci. 2021;22:13677. doi: 10.3390/ijms222413677. PubMed DOI PMC
Principal Components Analysis. [(accessed on 28 September 2023)]. Available online: https://search.r-project.org/R/refmans/stats/html/prcomp.html.
Changes in R 4.3.1. [(accessed on 28 September 2023)]. Available online: https://cran.r-project.org/bin/windows/base/NEWS.R-4.3.1.html.
Ggbiplot. [(accessed on 28 September 2023)]. Available online: https://github.com/vqv/ggbiplot.
Package Stats Version 4.3.1. Correlation, Variance and Covariance (Matrices) [(accessed on 28 September 2023)]. Available online: https://search.r-project.org/R/refmans/stats/html/cor.html.
Tsacheva I., Rostan J., Iossifova T., Vogler B., Odjakova M., Navas H., Kostova I., Kojouharova M., Kraus W. Complement inhibiting properties of dragon’s blood from Croton draco. Z. Für Naturforschung C. 2004;59:528–532. doi: 10.1515/znc-2004-7-814. PubMed DOI
Erb M., Kliebenstein D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 2020;184:39–52. doi: 10.1104/pp.20.00433. PubMed DOI PMC
Kapchina-Toteva V., Dimitrova M.A., Stefanova M., Koleva D., Kostov K., Yordanova Z.P., Stefanov D., Zhiponova M.K. Adaptive changes in photosynthetic performance and secondary metabolites during white dead nettle micropropagation. J. Plant Physiol. 2014;171:1344–1353. doi: 10.1016/j.jplph.2014.05.010. PubMed DOI
Shan X., Yan J., Xie D. Comparison of phytohormone signaling mechanisms. Curr. Opin. Plant Biol. 2012;15:84–91. doi: 10.1016/j.pbi.2011.09.006. PubMed DOI
Wu W., Du K., Kang X., Wei H. The diverse roles of cytokinins in regulating leaf development. Hortic. Res. 2021;8:118. doi: 10.1038/s41438-021-00558-3. PubMed DOI PMC
Achard P., Gusti A., Cheminant S., Alioua M., Dhondt S., Coppens F., Beemster G.T., Genschik P. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr. Biol. 2009;19:1188–1193. doi: 10.1016/j.cub.2009.05.059. PubMed DOI
Salazar-Cerezo S., Martínez-Montiel N., García-Sánchez J., Pérez-Y-Terrón R., Martínez-Contreras R.D. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiol. Res. 2018;208:85–98. doi: 10.1016/j.micres.2018.01.010. PubMed DOI
Pons T.L., Jordi W., Kuiper D. Acclimation of plants to light gradients in leaf canopies: Evidence for a possible role for cytokinins transported in the transpiration stream. J. Exp. Bot. 2001;52:1563–1574. doi: 10.1093/jexbot/52.360.1563. PubMed DOI
Kurepa J., Shull T.E., Smalle J.A. Friends in arms: Flavonoids and the auxin/cytokinin balance in terrestrialization. Plants. 2023;12:517. doi: 10.3390/plants12030517. PubMed DOI PMC
Khan N., Ali S., Zandi P., Mehmood A., Ullah S., Ikram M., Ismail I., Shahid M., Babar M.D. Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pak. J. Bot. 2020;52:355–363. doi: 10.30848/PJB2020-2(24). DOI
Maeda H., Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 2012;63:73–105. doi: 10.1146/annurev-arplant-042811-105439. PubMed DOI
Kraujalis P., Venskutonis P.R., Ragazinskiene O. 6th Baltic Conference on Food Science and Technology: Innovations for Food Science and Production, FOODBALT-2011—Conference Proceedings. Latvia University of Agriculture; Jelgava, Latvia: 2011. Antioxidant activities and phenolic composition of extracts from Nepeta plant species; pp. 79–83.
Aničić N., Gašić U., Lu F., Ćirić A., Ivanov M., Jevtić B., Dimitrijević M., Anđelković B., Skorić M., Nestorović Živković J., et al. Antimicrobial and immunomodulating activities of two endemic Nepeta species and their major iridoids isolated from natural sources. Pharmaceuticals. 2021;14:414. doi: 10.3390/ph14050414. PubMed DOI PMC
Li S., Pi J., Zhu H., Yang L., Zhang X., Ding W. Caffeic acid in tobacco root exudate defends tobacco plants from infection by Ralstonia solanacearum. Front. Plant Sci. 2021;12:690586. doi: 10.3389/fpls.2021.690586. PubMed DOI PMC
Zhang W., Wang G., Xu Z.G., Tu H., Hu F., Dai J., Chang Y., Chen Y., Lu Y., Zeng H., et al. Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell. 2019;178:176–189.e15. doi: 10.1016/j.cell.2019.05.003. PubMed DOI PMC
Mattioli R., Francioso A., Trovato M. Proline affects flowering time in Arabidopsis by modulating FLC expression: A clue of epigenetic regulation? Plants. 2022;11:2348. doi: 10.3390/plants11182348. PubMed DOI PMC
Panchal P., Miller A.J., Giri J. Organic acids: Versatile stress-response roles in plants. J. Exp. Bot. 2021;72:4038–4052. doi: 10.1093/jxb/erab019. PubMed DOI
Ortíz-Castro R., Contreras-Cornejo H.A., Macías-Rodríguez L., López-Bucio J. The role of microbial signals in plant growth and development. Plant Signal Behav. 2009;4:701–712. doi: 10.4161/psb.4.8.9047. PubMed DOI PMC
Lim G.H., Singhal R., Kachroo A., Kachroo P. Fatty acid–and lipid-mediated signaling in plant defense. Annu. Rev. Phytopathol. 2017;55:505–536. doi: 10.1146/annurev-phyto-080516-035406. PubMed DOI
Kim S.G., Kim M.J., Jin D.C., Park S.N., Cho E.G., Freire M.O., Jang S.J., Park Y.J., Kook J.K. Antimicrobial effect of ursolic acid and oleanolic acid against methicillin-resistant Staphylococcus aureus. Korean J. Microbiol. 2012;48:212–215. doi: 10.7845/kjm.2012.029. DOI
He M., Qin C.X., Wang X., Ding N.Z. Plant unsaturated fatty acids: Biosynthesis and regulation. Front. Plant Sci. 2020;11:390. doi: 10.3389/fpls.2020.00390. PubMed DOI PMC
Rodin J.O., Silverstein R.M., Burkholder W.E., Gorman J.E. Sex attractant of female dermestid beetle Trogoderma inclusum Le Conte. Science. 1969;165:904–906. doi: 10.1126/science.165.3896.904. PubMed DOI
Richardson L.L., Bowers M.D., Irwin R.E. Nectar chemistry mediates the behavior of parasitized bees: Consequences for plant fitness. Ecology. 2016;97:325–337. doi: 10.1890/15-0263.1. PubMed DOI
Zhang Q.H., Sheng M., Chen G., Aldrich J.R., Chauhan K.R. Iridodial: A powerful attractant for the green lacewing, Chrysopa septempunctata (Neuroptera: Chrysopidae) Naturwissenschaften. 2006;93:461–465. doi: 10.1007/s00114-006-0132-z. PubMed DOI
Melo N., Capek M., Arenas O.M., Afify A., Yilmaz A., Potter C.J., Laminette P.J., Para A., Gallio M., Stensmyr M.C. The irritant receptor TRPA1 mediates the mosquito repellent effect of catnip. Curr. Biol. 2021;31:1988–1994.e5. doi: 10.1016/j.cub.2021.02.010. PubMed DOI PMC
Kobaisy M., Tellez M.R., Dayan F.E., Mamonov L.K., Mukanova G.S., Sitpaeva G.T., Gemejieva N.G. Composition and phytotoxic activity of Nepeta pannonica L. essential oil. J. Essent. Oil Res. 2005;17:704–707. doi: 10.1080/10412905.2005.9699037. DOI
Miladinović D.L., Ilić B.S., Kocić B.D. Chemoinformatics approach to antibacterial studies of essential oils. Nat. Prod. Commun. 2015;10:1063–1066. doi: 10.1177/1934578X1501000667. PubMed DOI
Nararak J., Giorgio C.D., Sukkanon C., Mahiou-Leddet V., Ollivier E., Manguin S., Chareonviriyaphap T. Excito-repellency and biological safety of β-caryophyllene oxide against Aedes albopictus and Anopheles dirus (Diptera: Culicidae) Acta Trop. 2020;210:105556. doi: 10.1016/j.actatropica.2020.105556. PubMed DOI
Al-Ghanim K.A., Krishnappa K., Pandiyan J., Nicoletti M., Gurunathan B., Govindarajan M. Insecticidal potential of Matricaria chamomilla’s essential oil and its components (E)-β-farnesene, germacrene D, and α-bisabolol oxide A against agricultural pests, malaria, and Zika virus vectors. Agriculture. 2023;13:779. doi: 10.3390/agriculture13040779. DOI
Sharma K.R., Enzmann B.L., Schmidt Y., Moore D., Jones G.R., Parker J., Berger S.L., Reinberg D., Zwiebel L.J., Breit B., et al. Cuticular hydrocarbon pheromones for social behavior and their coding in the ant antenna. Cell Rep. 2015;12:1261–1271. doi: 10.1016/j.celrep.2015.07.031. PubMed DOI
Xu T., Xu M., Lu Y., Zhang W., Sun J., Zeng R., Turlings T.C.J., Chen L. A trail pheromone mediates the mutualism between ants and aphids. Curr. Biol. 2021;31:4738–4747.e4. doi: 10.1016/j.cub.2021.08.032. PubMed DOI
Aćimović M., Stanković-Jeremić J., Cvetković M. Phyto-pharmacological aspects of Nepeta nuda L.: A systematic review. Nat. Med. Mater. 2020;40:75–83. doi: 10.5937/leksir2040075A. DOI
De Rosso V.V., Morán Vieyra F.E., Mercadante A.Z., Borsarelli C.D. Singlet oxygen quenching by anthocyanin’s flavylium cations. Free Radic Res. 2008;42:885–891. doi: 10.1080/10715760802506349. PubMed DOI
Khatri D., Chhetri S.B.B. Reducing sugar, total phenolic content, and antioxidant potential of Nepalese plants. Biomed Res. Int. 2020;2020:7296859. doi: 10.1155/2020/7296859. PubMed DOI PMC
Hecht A.L., Harling L.C., Friedman E.S., Tanes C., Lee J., Firrman J., Tu V., Liu L.S., Bittinger K., Goulian M., et al. Colonization and dissemination of Klebsiella pneumoniae is dependent on dietary carbohydrates. bioRxiv. 2023 doi: 10.1101/2023.05.25.542283. bioRxiv:2023.05.25.542283. PubMed DOI PMC
Chen F., Elgaher W.A.M., Winterhoff M., Büssow K., Waqas F.H., Graner E., Pires-Afonso Y., Casares Perez L., de la Vega L., Sahini N., et al. Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism. Nat. Metab. 2022;4:534–546. doi: 10.1038/s42255-022-00577-x. PubMed DOI PMC
Adamczak A., Ożarowski M., Karpiński T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 2019;9:109. doi: 10.3390/jcm9010109. PubMed DOI PMC
Lin T.H., Huang S.H., Wu C.C., Liu H.H., Jinn T.R., Chen Y., Lin C.T. Inhibition of Klebsiella pneumoniae growth and capsular polysaccharide biosynthesis by Fructus mume. Evid.-Based Complement. Altern. Med. 2013;2013:621701. doi: 10.1155/2013/621701. PubMed DOI PMC
Jenior M.L., Dickenson M.E., Papin J.A. Genome-scale metabolic modeling reveals increased reliance on valine catabolism in clinical isolates of Klebsiella pneumoniae. NPJ Syst. Biol. Appl. 2022;8:41. doi: 10.1038/s41540-022-00252-7. PubMed DOI PMC
Chen X., Qin S., Zhao X., Zhou S. l-Proline protects mice challenged by Klebsiella pneumoniae bacteremia. J. Microbiol. Immunol. Infect. 2021;54:213–220. doi: 10.1016/j.jmii.2019.05.013. PubMed DOI
Tawfeeq H.K. The effect of D and L-amino acids on biofilm formation in different microorganisms. Iraqi J. Sci. 2016;57:570–575.
Dobrange E., Peshev D., Loedolff B., Van den Ende W. Fructans as Immunomodulatory and Antiviral Agents: The Case of Echinacea. Biomolecules. 2019;9:615. doi: 10.3390/biom9100615. PubMed DOI PMC
Pająk B., Zieliński R., Manning J.T., Matejin S., Paessler S., Fokt I., Emmett M.R., Priebe W. The Antiviral Effects of 2-Deoxy-D-glucose (2-DG), a Dual D-Glucose and D-Mannose Mimetic, against SARS-CoV-2 and Other Highly Pathogenic Viruses. Molecules. 2022;27:5928. doi: 10.3390/molecules27185928. PubMed DOI PMC
Mei R., Heng X., Liu X., Chen G. Glycopolymers for antibacterial and antiviral applications. Molecules. 2023;28:985. doi: 10.3390/molecules28030985. PubMed DOI PMC
Liu M., Yu Q., Yi Y., Xiao H., Putra D.F., Ke K., Zhang Q., Li P. Antiviral activities of Lonicera japonica Thunb. components against grouper iridovirus in vitro and in vivo. Aquaculture. 2020;519:734882. doi: 10.1016/j.aquaculture.2019.734882. DOI
Nguyen B.C.Q., Shahinozzaman M., Tien N.T.K., Thach T.N., Tawata S. Effect of sucrose on antioxidant activities and other health-related micronutrients in gamma-aminobutyric acid (GABA)-enriched sprouting Southern Vietnam brown rice. J. Cereal Sci. 2020;93:102985. doi: 10.1016/j.jcs.2020.102985. DOI
Ai X., He W., Wang X., Wang Z., Wang G., Lu H., Qin S., Li Z., Guan J., Zhao K., et al. Antiviral effect of lysosomotropic disaccharide trehalose on porcine hemagglutinating encephalomyelitis virus, a highly neurotropic betacoronavirus. Virology. 2022;577:131–137. doi: 10.1016/j.virol.2022.10.013. PubMed DOI
Fatoki T.H., Sanni D.M., Momodu D.U., Ugboko H.U., Adeseko C.J., Faleye B.C. Evaluation of empirical functions and fate of isomaltose. J. Appl. Life Sci. Int. 2018;16:1–10. doi: 10.9734/JALSI/2018/39370. DOI
Fang L., Gao Y., Lan M., Jiang P., Bai J., Li Y., Wang X. Hydroquinone inhibits PRV infection in neurons in vitro and in vivo. Vet. Microbiol. 2020;250:108864. doi: 10.1016/j.vetmic.2020.108864. PubMed DOI
Giovannini C., Straface E., Modesti D., Coni E., Cantafora A., De Vincenzi M., Malorni W., Masella R. Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells. J. Nutr. 1999;129:1269–1277. doi: 10.1093/jn/129.7.1269. PubMed DOI
Serreli G., Deiana M. Biological relevance of extra virgin olive oil polyphenols metabolites. Antioxidants. 2018;7:170. doi: 10.3390/antiox7120170. PubMed DOI PMC
Stankova I., Chuchkov K., Shishkov S., Kostova K., Mukova L., Galabov A.S. Synthesis, antioxidative and antiviral activity of hydroxycinnamic acid amides of thiazole containing amino acid. Amino Acids. 2009;37:383–388. doi: 10.1007/s00726-008-0165-z. PubMed DOI
Zhao J., Lou J., Mou Y., Li P., Wu J., Zhou L. Diterpenoid tanshinones and phenolic acids from cultured hairy roots of Salvia miltiorrhiza Bunge and their antimicrobial activities. Molecules. 2011;16:2259–2267. doi: 10.3390/molecules16032259. PubMed DOI PMC
Nadeem M., Imran M., Aslam Gondal T., Imran A., Shahbaz M., Muhammad Amir R., Wasim Sajid M., Batool Qaisrani T., Atif M., Hussain G., et al. Therapeutic potential of rosmarinic acid: A comprehensive review. Appl. Sci. 2019;9:3139. doi: 10.3390/app9153139. DOI
Bai J., Wu Y., Zhong K., Xiao K., Liu L., Huang Y., Wang Z., Gao H. A Comparative study on the effects of quinic acid and shikimic acid on cellular functions of Staphylococcus aureus. J. Food Prot. 2018;81:1187–1192. doi: 10.4315/0362-028X.JFP-18-014. PubMed DOI
Hobby C.R., Herndon J.L., Morrow C.A., Peters R.E., Symes S.J.K., Giles D.K. Exogenous fatty acids alter phospholipid composition, membrane permeability, capacity for biofilm formation, and antimicrobial peptide susceptibility in Klebsiella pneumoniae. MicrobiologyOpen. 2019;8:e00635. doi: 10.1002/mbo3.635. PubMed DOI PMC
Das D., Arulkumar A., Paramasivam S., Lopez-Santamarina A., del Carmen Mondragon A., Miranda Lopez J.M. Phytochemical constituents, antimicrobial properties and bioactivity of marine red seaweed (Kappaphycus alvarezii) and seagrass (Cymodocea serrulata) Foods. 2023;12:2811. doi: 10.3390/foods12142811. PubMed DOI PMC
Aly S.H., Elissawy A.M., Eldahshan O.A., Elshanawany M.A., Singab A.B. Phytochemical investigation using GC/MS analysis and evaluation of antimicrobial and cytotoxic activities of the lipoidal matter of leaves of Sophora secundiflora and Sophora tomentosa. Arch. Pharm. Sci. Ain Shams Univ. 2020;4:207–214. doi: 10.21608/aps.2020.38371.1039. DOI
Mint Evolutionary Genomics Consortium Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in Lamiaceae. Mol. Plant. 2018;11:1084–1096. doi: 10.1016/j.molp.2018.06.002. PubMed DOI