• This record comes from PubMed

Uncovering the Interrelation between Metabolite Profiles and Bioactivity of In Vitro- and Wild-Grown Catmint (Nepeta nuda L.)

. 2023 Oct 20 ; 13 (10) : . [epub] 20231020

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
KP-06-N56/9/12.11.2021 Bulgarian Science Fund
BG05M2OP001-1.002-0012 Operational Program Science and Education for Smart Growth 2014-2020 co-financed by the European Union through the European Structural and Investment Funds, and by the Bulgarian Ministry of Education and Science

Nepeta nuda L. is a medicinal plant enriched with secondary metabolites serving to attract pollinators and deter herbivores. Phenolics and iridoids of N. nuda have been extensively investigated because of their beneficial impacts on human health. This study explores the chemical profiles of in vitro shoots and wild-grown N. nuda plants (flowers and leaves) through metabolomic analysis utilizing gas chromatography and mass spectrometry (GC-MS). Initially, we examined the differences in the volatiles' composition in in vitro-cultivated shoots comparing them with flowers and leaves from plants growing in natural environment. The characteristic iridoid 4a-α,7-β,7a-α-nepetalactone was highly represented in shoots of in vitro plants and in flowers of plants from nature populations, whereas most of the monoterpenes were abundant in leaves of wild-grown plants. The known in vitro biological activities encompassing antioxidant, antiviral, antibacterial potentials alongside the newly assessed anti-inflammatory effects exhibited consistent associations with the total content of phenolics, reducing sugars, and the identified metabolic profiles in polar (organic acids, amino acids, alcohols, sugars, phenolics) and non-polar (fatty acids, alkanes, sterols) fractions. Phytohormonal levels were also quantified to infer the regulatory pathways governing phytochemical production. The overall dataset highlighted compounds with the potential to contribute to N. nuda bioactivity.

See more in PubMed

Shao H.B., Chu L.Y., Shao M.A., Jaleel C.A., Mi H.M. Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biol. 2008;331:433–441. doi: 10.1016/j.crvi.2008.03.011. PubMed DOI

Kilic O., Hayta S., Bagci E. Chemical composition of essential oil of Nepeta nuda L. subsp. nuda (Lamiaceae) from Turkey. Asian J. Chem. 2011;23:2788–2790.

Alekseeva M., Rusanova M., Rusanov K., Atanassov I. A set of highly polymorphic microsatellite markers for genetic diversity studies in the genus Origanum. Plants. 2023;12:824. doi: 10.3390/plants12040824. PubMed DOI PMC

Aćimović M., Lončar B., Pezo M., Stanković Jeremić J., Cvetković M., Rat M., Pezo L. Volatile compounds of Nepeta nuda L. from Rtanj Mountain (Serbia) Horticulturae. 2022;8:85. doi: 10.3390/horticulturae8020085. DOI

Aničić N., Matekalo D., Skorić M., Živković J.N., Petrović L., Dragićević M., Dmitrović S., Mišić D. Alterations in nepetalactone metabolism during polyethylene glycol (PEG)-induced dehydration stress in two Nepeta species. Phytochemistry. 2020;174:112340. doi: 10.1016/j.phytochem.2020.112340. PubMed DOI

Kofidis G., Bosabalidis A.M. Effects of altitude and season on glandular hairs and leaf structural traits of Nepeta nuda L. Bot. Stud. 2008;49:363–372.

Eisner T. Catnip: Its raison d’être. Science. 1964;146:1318–1320. doi: 10.1126/science.146.3649.1318. PubMed DOI

Bozek M. Pollen efficiency and foraging by insect pollinators in three catnip (Nepeta L.) species. J. Apic. Sci. 2003;47:19–24.

Uenoyama R., Miyazaki T., Hurst J.L., Beynon R.J., Adachi M., Murooka T., Onoda I., Miyazawa Y., Katayama R., Yamashita T., et al. The characteristic response of domestic cats to plant iridoids allows them to gain chemical defense against mosquitoes. Sci. Adv. 2021;7:eabd9135. doi: 10.1126/sciadv.abd9135. PubMed DOI PMC

Petrova D., Gašić U., Yocheva L., Hinkov A., Yordanova Z., Chaneva G., Mantovska D., Paunov M., Ivanova L., Rogova M., et al. Catmint (Nepeta nuda L.) phylogenetics and metabolic responses in variable growth conditions. Front. Plant Sci. 2022;13:866777. doi: 10.3389/fpls.2022.866777. PubMed DOI PMC

Murashige T., Skoog F.A. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectorscopy. 4th ed. Allured Pub. Corp.; Carol Stream, IL, USA: 2007.

Mantovska D.I., Zhiponova M.K., Georgiev M.I., Alipieva K., Tsacheva I., Simova S., Yordanova Z.P. Biological Activity and NMR-Fingerprinting of Balkan endemic species Stachys thracica Davidov. Metabolites. 2022;12:251. doi: 10.3390/metabo12030251. PubMed DOI PMC

Lindoo S.J., Caldwell M.M. Ultraviolet-B radiation-induced inhibition of leaf expansion and promotion of anthocyanin production: Lack of involvement of the low irradiance phytochrome system. Plant Physiol. 1978;61:278–282. doi: 10.1104/pp.61.2.278. PubMed DOI PMC

Plummer D.T. Biochemical Education. 3rd ed. Volume 16. McGraw-Hill College; London, UK: 1988. An introduction to practical biochemistry; pp. 98–100.

Prerostova S., Dobrev P.I., Knirsch V., Jarosova J., Gaudinova A., Zupkova B., Prášil I.T., Janda T., Brzobohatý B., Skalák J., et al. Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci. 2021;22:2736. doi: 10.3390/ijms22052736. PubMed DOI PMC

Mishev K., Dobrev P.I., Lacek J., Filepová R., Yuperlieva-Mateeva B., Kostadinova A., Hristeva T. Hormonomic changes driving the negative impact of broomrape on plant host interactions with arbuscular mycorrhizal fungi. Int. J. Mol. Sci. 2021;22:13677. doi: 10.3390/ijms222413677. PubMed DOI PMC

Principal Components Analysis. [(accessed on 28 September 2023)]. Available online: https://search.r-project.org/R/refmans/stats/html/prcomp.html.

Changes in R 4.3.1. [(accessed on 28 September 2023)]. Available online: https://cran.r-project.org/bin/windows/base/NEWS.R-4.3.1.html.

Ggbiplot. [(accessed on 28 September 2023)]. Available online: https://github.com/vqv/ggbiplot.

Package Stats Version 4.3.1. Correlation, Variance and Covariance (Matrices) [(accessed on 28 September 2023)]. Available online: https://search.r-project.org/R/refmans/stats/html/cor.html.

Tsacheva I., Rostan J., Iossifova T., Vogler B., Odjakova M., Navas H., Kostova I., Kojouharova M., Kraus W. Complement inhibiting properties of dragon’s blood from Croton draco. Z. Für Naturforschung C. 2004;59:528–532. doi: 10.1515/znc-2004-7-814. PubMed DOI

Erb M., Kliebenstein D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 2020;184:39–52. doi: 10.1104/pp.20.00433. PubMed DOI PMC

Kapchina-Toteva V., Dimitrova M.A., Stefanova M., Koleva D., Kostov K., Yordanova Z.P., Stefanov D., Zhiponova M.K. Adaptive changes in photosynthetic performance and secondary metabolites during white dead nettle micropropagation. J. Plant Physiol. 2014;171:1344–1353. doi: 10.1016/j.jplph.2014.05.010. PubMed DOI

Shan X., Yan J., Xie D. Comparison of phytohormone signaling mechanisms. Curr. Opin. Plant Biol. 2012;15:84–91. doi: 10.1016/j.pbi.2011.09.006. PubMed DOI

Wu W., Du K., Kang X., Wei H. The diverse roles of cytokinins in regulating leaf development. Hortic. Res. 2021;8:118. doi: 10.1038/s41438-021-00558-3. PubMed DOI PMC

Achard P., Gusti A., Cheminant S., Alioua M., Dhondt S., Coppens F., Beemster G.T., Genschik P. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr. Biol. 2009;19:1188–1193. doi: 10.1016/j.cub.2009.05.059. PubMed DOI

Salazar-Cerezo S., Martínez-Montiel N., García-Sánchez J., Pérez-Y-Terrón R., Martínez-Contreras R.D. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiol. Res. 2018;208:85–98. doi: 10.1016/j.micres.2018.01.010. PubMed DOI

Pons T.L., Jordi W., Kuiper D. Acclimation of plants to light gradients in leaf canopies: Evidence for a possible role for cytokinins transported in the transpiration stream. J. Exp. Bot. 2001;52:1563–1574. doi: 10.1093/jexbot/52.360.1563. PubMed DOI

Kurepa J., Shull T.E., Smalle J.A. Friends in arms: Flavonoids and the auxin/cytokinin balance in terrestrialization. Plants. 2023;12:517. doi: 10.3390/plants12030517. PubMed DOI PMC

Khan N., Ali S., Zandi P., Mehmood A., Ullah S., Ikram M., Ismail I., Shahid M., Babar M.D. Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pak. J. Bot. 2020;52:355–363. doi: 10.30848/PJB2020-2(24). DOI

Maeda H., Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 2012;63:73–105. doi: 10.1146/annurev-arplant-042811-105439. PubMed DOI

Kraujalis P., Venskutonis P.R., Ragazinskiene O. 6th Baltic Conference on Food Science and Technology: Innovations for Food Science and Production, FOODBALT-2011—Conference Proceedings. Latvia University of Agriculture; Jelgava, Latvia: 2011. Antioxidant activities and phenolic composition of extracts from Nepeta plant species; pp. 79–83.

Aničić N., Gašić U., Lu F., Ćirić A., Ivanov M., Jevtić B., Dimitrijević M., Anđelković B., Skorić M., Nestorović Živković J., et al. Antimicrobial and immunomodulating activities of two endemic Nepeta species and their major iridoids isolated from natural sources. Pharmaceuticals. 2021;14:414. doi: 10.3390/ph14050414. PubMed DOI PMC

Li S., Pi J., Zhu H., Yang L., Zhang X., Ding W. Caffeic acid in tobacco root exudate defends tobacco plants from infection by Ralstonia solanacearum. Front. Plant Sci. 2021;12:690586. doi: 10.3389/fpls.2021.690586. PubMed DOI PMC

Zhang W., Wang G., Xu Z.G., Tu H., Hu F., Dai J., Chang Y., Chen Y., Lu Y., Zeng H., et al. Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell. 2019;178:176–189.e15. doi: 10.1016/j.cell.2019.05.003. PubMed DOI PMC

Mattioli R., Francioso A., Trovato M. Proline affects flowering time in Arabidopsis by modulating FLC expression: A clue of epigenetic regulation? Plants. 2022;11:2348. doi: 10.3390/plants11182348. PubMed DOI PMC

Panchal P., Miller A.J., Giri J. Organic acids: Versatile stress-response roles in plants. J. Exp. Bot. 2021;72:4038–4052. doi: 10.1093/jxb/erab019. PubMed DOI

Ortíz-Castro R., Contreras-Cornejo H.A., Macías-Rodríguez L., López-Bucio J. The role of microbial signals in plant growth and development. Plant Signal Behav. 2009;4:701–712. doi: 10.4161/psb.4.8.9047. PubMed DOI PMC

Lim G.H., Singhal R., Kachroo A., Kachroo P. Fatty acid–and lipid-mediated signaling in plant defense. Annu. Rev. Phytopathol. 2017;55:505–536. doi: 10.1146/annurev-phyto-080516-035406. PubMed DOI

Kim S.G., Kim M.J., Jin D.C., Park S.N., Cho E.G., Freire M.O., Jang S.J., Park Y.J., Kook J.K. Antimicrobial effect of ursolic acid and oleanolic acid against methicillin-resistant Staphylococcus aureus. Korean J. Microbiol. 2012;48:212–215. doi: 10.7845/kjm.2012.029. DOI

He M., Qin C.X., Wang X., Ding N.Z. Plant unsaturated fatty acids: Biosynthesis and regulation. Front. Plant Sci. 2020;11:390. doi: 10.3389/fpls.2020.00390. PubMed DOI PMC

Rodin J.O., Silverstein R.M., Burkholder W.E., Gorman J.E. Sex attractant of female dermestid beetle Trogoderma inclusum Le Conte. Science. 1969;165:904–906. doi: 10.1126/science.165.3896.904. PubMed DOI

Richardson L.L., Bowers M.D., Irwin R.E. Nectar chemistry mediates the behavior of parasitized bees: Consequences for plant fitness. Ecology. 2016;97:325–337. doi: 10.1890/15-0263.1. PubMed DOI

Zhang Q.H., Sheng M., Chen G., Aldrich J.R., Chauhan K.R. Iridodial: A powerful attractant for the green lacewing, Chrysopa septempunctata (Neuroptera: Chrysopidae) Naturwissenschaften. 2006;93:461–465. doi: 10.1007/s00114-006-0132-z. PubMed DOI

Melo N., Capek M., Arenas O.M., Afify A., Yilmaz A., Potter C.J., Laminette P.J., Para A., Gallio M., Stensmyr M.C. The irritant receptor TRPA1 mediates the mosquito repellent effect of catnip. Curr. Biol. 2021;31:1988–1994.e5. doi: 10.1016/j.cub.2021.02.010. PubMed DOI PMC

Kobaisy M., Tellez M.R., Dayan F.E., Mamonov L.K., Mukanova G.S., Sitpaeva G.T., Gemejieva N.G. Composition and phytotoxic activity of Nepeta pannonica L. essential oil. J. Essent. Oil Res. 2005;17:704–707. doi: 10.1080/10412905.2005.9699037. DOI

Miladinović D.L., Ilić B.S., Kocić B.D. Chemoinformatics approach to antibacterial studies of essential oils. Nat. Prod. Commun. 2015;10:1063–1066. doi: 10.1177/1934578X1501000667. PubMed DOI

Nararak J., Giorgio C.D., Sukkanon C., Mahiou-Leddet V., Ollivier E., Manguin S., Chareonviriyaphap T. Excito-repellency and biological safety of β-caryophyllene oxide against Aedes albopictus and Anopheles dirus (Diptera: Culicidae) Acta Trop. 2020;210:105556. doi: 10.1016/j.actatropica.2020.105556. PubMed DOI

Al-Ghanim K.A., Krishnappa K., Pandiyan J., Nicoletti M., Gurunathan B., Govindarajan M. Insecticidal potential of Matricaria chamomilla’s essential oil and its components (E)-β-farnesene, germacrene D, and α-bisabolol oxide A against agricultural pests, malaria, and Zika virus vectors. Agriculture. 2023;13:779. doi: 10.3390/agriculture13040779. DOI

Sharma K.R., Enzmann B.L., Schmidt Y., Moore D., Jones G.R., Parker J., Berger S.L., Reinberg D., Zwiebel L.J., Breit B., et al. Cuticular hydrocarbon pheromones for social behavior and their coding in the ant antenna. Cell Rep. 2015;12:1261–1271. doi: 10.1016/j.celrep.2015.07.031. PubMed DOI

Xu T., Xu M., Lu Y., Zhang W., Sun J., Zeng R., Turlings T.C.J., Chen L. A trail pheromone mediates the mutualism between ants and aphids. Curr. Biol. 2021;31:4738–4747.e4. doi: 10.1016/j.cub.2021.08.032. PubMed DOI

Aćimović M., Stanković-Jeremić J., Cvetković M. Phyto-pharmacological aspects of Nepeta nuda L.: A systematic review. Nat. Med. Mater. 2020;40:75–83. doi: 10.5937/leksir2040075A. DOI

De Rosso V.V., Morán Vieyra F.E., Mercadante A.Z., Borsarelli C.D. Singlet oxygen quenching by anthocyanin’s flavylium cations. Free Radic Res. 2008;42:885–891. doi: 10.1080/10715760802506349. PubMed DOI

Khatri D., Chhetri S.B.B. Reducing sugar, total phenolic content, and antioxidant potential of Nepalese plants. Biomed Res. Int. 2020;2020:7296859. doi: 10.1155/2020/7296859. PubMed DOI PMC

Hecht A.L., Harling L.C., Friedman E.S., Tanes C., Lee J., Firrman J., Tu V., Liu L.S., Bittinger K., Goulian M., et al. Colonization and dissemination of Klebsiella pneumoniae is dependent on dietary carbohydrates. bioRxiv. 2023 doi: 10.1101/2023.05.25.542283. bioRxiv:2023.05.25.542283. PubMed DOI PMC

Chen F., Elgaher W.A.M., Winterhoff M., Büssow K., Waqas F.H., Graner E., Pires-Afonso Y., Casares Perez L., de la Vega L., Sahini N., et al. Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism. Nat. Metab. 2022;4:534–546. doi: 10.1038/s42255-022-00577-x. PubMed DOI PMC

Adamczak A., Ożarowski M., Karpiński T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 2019;9:109. doi: 10.3390/jcm9010109. PubMed DOI PMC

Lin T.H., Huang S.H., Wu C.C., Liu H.H., Jinn T.R., Chen Y., Lin C.T. Inhibition of Klebsiella pneumoniae growth and capsular polysaccharide biosynthesis by Fructus mume. Evid.-Based Complement. Altern. Med. 2013;2013:621701. doi: 10.1155/2013/621701. PubMed DOI PMC

Jenior M.L., Dickenson M.E., Papin J.A. Genome-scale metabolic modeling reveals increased reliance on valine catabolism in clinical isolates of Klebsiella pneumoniae. NPJ Syst. Biol. Appl. 2022;8:41. doi: 10.1038/s41540-022-00252-7. PubMed DOI PMC

Chen X., Qin S., Zhao X., Zhou S. l-Proline protects mice challenged by Klebsiella pneumoniae bacteremia. J. Microbiol. Immunol. Infect. 2021;54:213–220. doi: 10.1016/j.jmii.2019.05.013. PubMed DOI

Tawfeeq H.K. The effect of D and L-amino acids on biofilm formation in different microorganisms. Iraqi J. Sci. 2016;57:570–575.

Dobrange E., Peshev D., Loedolff B., Van den Ende W. Fructans as Immunomodulatory and Antiviral Agents: The Case of Echinacea. Biomolecules. 2019;9:615. doi: 10.3390/biom9100615. PubMed DOI PMC

Pająk B., Zieliński R., Manning J.T., Matejin S., Paessler S., Fokt I., Emmett M.R., Priebe W. The Antiviral Effects of 2-Deoxy-D-glucose (2-DG), a Dual D-Glucose and D-Mannose Mimetic, against SARS-CoV-2 and Other Highly Pathogenic Viruses. Molecules. 2022;27:5928. doi: 10.3390/molecules27185928. PubMed DOI PMC

Mei R., Heng X., Liu X., Chen G. Glycopolymers for antibacterial and antiviral applications. Molecules. 2023;28:985. doi: 10.3390/molecules28030985. PubMed DOI PMC

Liu M., Yu Q., Yi Y., Xiao H., Putra D.F., Ke K., Zhang Q., Li P. Antiviral activities of Lonicera japonica Thunb. components against grouper iridovirus in vitro and in vivo. Aquaculture. 2020;519:734882. doi: 10.1016/j.aquaculture.2019.734882. DOI

Nguyen B.C.Q., Shahinozzaman M., Tien N.T.K., Thach T.N., Tawata S. Effect of sucrose on antioxidant activities and other health-related micronutrients in gamma-aminobutyric acid (GABA)-enriched sprouting Southern Vietnam brown rice. J. Cereal Sci. 2020;93:102985. doi: 10.1016/j.jcs.2020.102985. DOI

Ai X., He W., Wang X., Wang Z., Wang G., Lu H., Qin S., Li Z., Guan J., Zhao K., et al. Antiviral effect of lysosomotropic disaccharide trehalose on porcine hemagglutinating encephalomyelitis virus, a highly neurotropic betacoronavirus. Virology. 2022;577:131–137. doi: 10.1016/j.virol.2022.10.013. PubMed DOI

Fatoki T.H., Sanni D.M., Momodu D.U., Ugboko H.U., Adeseko C.J., Faleye B.C. Evaluation of empirical functions and fate of isomaltose. J. Appl. Life Sci. Int. 2018;16:1–10. doi: 10.9734/JALSI/2018/39370. DOI

Fang L., Gao Y., Lan M., Jiang P., Bai J., Li Y., Wang X. Hydroquinone inhibits PRV infection in neurons in vitro and in vivo. Vet. Microbiol. 2020;250:108864. doi: 10.1016/j.vetmic.2020.108864. PubMed DOI

Giovannini C., Straface E., Modesti D., Coni E., Cantafora A., De Vincenzi M., Malorni W., Masella R. Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells. J. Nutr. 1999;129:1269–1277. doi: 10.1093/jn/129.7.1269. PubMed DOI

Serreli G., Deiana M. Biological relevance of extra virgin olive oil polyphenols metabolites. Antioxidants. 2018;7:170. doi: 10.3390/antiox7120170. PubMed DOI PMC

Stankova I., Chuchkov K., Shishkov S., Kostova K., Mukova L., Galabov A.S. Synthesis, antioxidative and antiviral activity of hydroxycinnamic acid amides of thiazole containing amino acid. Amino Acids. 2009;37:383–388. doi: 10.1007/s00726-008-0165-z. PubMed DOI

Zhao J., Lou J., Mou Y., Li P., Wu J., Zhou L. Diterpenoid tanshinones and phenolic acids from cultured hairy roots of Salvia miltiorrhiza Bunge and their antimicrobial activities. Molecules. 2011;16:2259–2267. doi: 10.3390/molecules16032259. PubMed DOI PMC

Nadeem M., Imran M., Aslam Gondal T., Imran A., Shahbaz M., Muhammad Amir R., Wasim Sajid M., Batool Qaisrani T., Atif M., Hussain G., et al. Therapeutic potential of rosmarinic acid: A comprehensive review. Appl. Sci. 2019;9:3139. doi: 10.3390/app9153139. DOI

Bai J., Wu Y., Zhong K., Xiao K., Liu L., Huang Y., Wang Z., Gao H. A Comparative study on the effects of quinic acid and shikimic acid on cellular functions of Staphylococcus aureus. J. Food Prot. 2018;81:1187–1192. doi: 10.4315/0362-028X.JFP-18-014. PubMed DOI

Hobby C.R., Herndon J.L., Morrow C.A., Peters R.E., Symes S.J.K., Giles D.K. Exogenous fatty acids alter phospholipid composition, membrane permeability, capacity for biofilm formation, and antimicrobial peptide susceptibility in Klebsiella pneumoniae. MicrobiologyOpen. 2019;8:e00635. doi: 10.1002/mbo3.635. PubMed DOI PMC

Das D., Arulkumar A., Paramasivam S., Lopez-Santamarina A., del Carmen Mondragon A., Miranda Lopez J.M. Phytochemical constituents, antimicrobial properties and bioactivity of marine red seaweed (Kappaphycus alvarezii) and seagrass (Cymodocea serrulata) Foods. 2023;12:2811. doi: 10.3390/foods12142811. PubMed DOI PMC

Aly S.H., Elissawy A.M., Eldahshan O.A., Elshanawany M.A., Singab A.B. Phytochemical investigation using GC/MS analysis and evaluation of antimicrobial and cytotoxic activities of the lipoidal matter of leaves of Sophora secundiflora and Sophora tomentosa. Arch. Pharm. Sci. Ain Shams Univ. 2020;4:207–214. doi: 10.21608/aps.2020.38371.1039. DOI

Mint Evolutionary Genomics Consortium Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in Lamiaceae. Mol. Plant. 2018;11:1084–1096. doi: 10.1016/j.molp.2018.06.002. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...