A Microbiological, Toxicological, and Biochemical Study of the Effects of Fucoxanthin, a Marine Carotenoid, on Mycobacterium tuberculosis and the Enzymes Implicated in Its Cell Wall: A Link Between Mycobacterial Infection and Autoimmune Diseases
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
31739453
PubMed Central
PMC6891772
DOI
10.3390/md17110641
PII: md17110641
Knihovny.cz E-resources
- Keywords
- Mycobacterium tuberculosis, UDP-galactopyranose mutase, arylamine-N-acetyltransferase, autoimmunity, fucoxanthin, marine carotenoid, pathogenesis,
- MeSH
- Antitubercular Agents pharmacology MeSH
- Arylamine N-Acetyltransferase metabolism MeSH
- Autoimmune Diseases drug therapy MeSH
- Cell Wall drug effects enzymology MeSH
- Cell Line MeSH
- Intramolecular Transferases metabolism MeSH
- Isoenzymes metabolism MeSH
- Carotenoids pharmacology MeSH
- Humans MeSH
- Microbial Sensitivity Tests methods MeSH
- Mycobacterium tuberculosis drug effects enzymology MeSH
- Molecular Docking Simulation methods MeSH
- Tuberculosis drug therapy MeSH
- Xanthophylls pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antitubercular Agents MeSH
- Arylamine N-Acetyltransferase MeSH
- fucoxanthin MeSH Browser
- Intramolecular Transferases MeSH
- Isoenzymes MeSH
- Carotenoids MeSH
- N-acetyltransferase 1 MeSH Browser
- UDP-galactopyranose mutase MeSH Browser
- Xanthophylls MeSH
This study explored the antitubercular properties of fucoxanthin, a marine carotenoid, against clinical isolates of Mycobacterium tuberculosis (Mtb). Two vital enzymes involved in Mtb cell wall biosynthesis, UDP-galactopyranose mutase (UGM) and arylamine-N-acetyltransferase (TBNAT), were selected as drug targets to reveal the mechanism underlying the antitubercular effect of fucoxanthin. The obtained results showed that fucoxanthin showed a clear bacteriostatic action against the all Mtb strains tested, with minimum inhibitory concentrations (MIC) ranging from 2.8 to 4.1 µM, along with a good degree of selectivity index (ranging from 6.1 to 8.9) based on cellular toxicity evaluation compared with standard drug isoniazid (INH). The potent inhibitory actions of fucoxanthin and standard uridine-5'-diphosphate against UGM were recorded to be 98.2% and 99.2%, respectively. TBNAT was potently inactivated by fucoxanthin (half maximal inhibitory concentration (IC50) = 4.8 µM; 99.1% inhibition) as compared to INH (IC50 = 5.9 µM; 97.4% inhibition). Further, molecular docking approaches were achieved to endorse and rationalize the biological findings along with envisaging structure-activity relationships. Since the clinical evidence of the last decade has confirmed the correlation between bacterial infections and autoimmune diseases, in this study we have discussed the linkage between infection with Mtb and autoimmune diseases based on previous clinical observations and animal studies. In conclusion, we propose that fucoxanthin could demonstrate great therapeutic value for the treatment of tuberculosis by acting on multiple targets through a bacteriostatic effect as well as by inhibiting UGM and TBNAT. Such outcomes may lead to avoiding or decreasing the susceptibility to autoimmune diseases associated with Mtb infection in a genetically susceptible host.
Kazakh Research Institute of Processing and Food Industry Semey 071410 Kazakhstan
Museum of Literature in Moravia Klášter 1 664 61 Rajhrad Czech Republic
See more in PubMed
Daletos G., Ancheeva E., Chaidir C., Kalscheuer R., Proksch P. Antimycobacterial Metabolites from Marine Invertebrates. Arch. Pharm. 2016;349:763–773. doi: 10.1002/ardp.201600128. PubMed DOI
Dong M., Pfeiffer B., Altmann K.H. Recent developments in natural product-based drug discovery for tuberculosis. Drug Discov. Today. 2017;22:585–591. doi: 10.1016/j.drudis.2016.11.015. PubMed DOI
Lee H., Suh J.W. Anti-tuberculosis lead molecules from natural products targeting Mycobacterium tuberculosis ClpC1. J. Ind. Microbiol. Biotechnol. 2016;43:205–212. doi: 10.1007/s10295-015-1709-3. PubMed DOI
Soltero-Higgin M., Carlson E.E., Gruber T.D., Kiessling L.L. A unique catalytic mechanism for UDP-galactopyranose mutase. Nat. Struct. Mol. Biol. 2004;11:539–543. doi: 10.1038/nsmb772. PubMed DOI
Pan F., Jackson M., Ma Y.F., McNeil M.J. Cell wall core galactofuran synthesis is essential for growth of mycobacteria. J. Bacteriol. 2001;183:3991–3998. doi: 10.1128/JB.183.13.3991-3998.2001. PubMed DOI PMC
Tefsen B., Ram A.F., van Die I., Routier F.H. Galactofuranose in eukaryotes: Aspects of biosynthesis and functional impact. Glycobiology. 2012;22:456–469. doi: 10.1093/glycob/cwr144. PubMed DOI
Pedersen L.L., Turco S.J. Galactofuranose metabolism: A potential target for antimicrobial chemotherapy. Cell. Mol. Life Sci. 2003;60:259–266. PubMed PMC
Westwood I.M., Bhakta S., Russell A.J., Fullam E., Anderton M.C., Kawamura A., Mulvaney A.W., Vickers R.J., Bhowruth V., Besra G.S., et al. Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars. Protein Cell. 2010;1:82–95. doi: 10.1007/s13238-010-0006-1. PubMed DOI PMC
Butcher N.J., Tiang J., Minchin R.F. Regulation of arylamine N-acetyltransferases. Curr. Drug Metab. 2008;9:498–504. doi: 10.2174/138920008784892128. PubMed DOI
Hassan S.T.S., Šudomová M., Berchová-Bímová K., Gowrishankar S., Rengasamy K.R.R. Antimycobacterial, Enzyme Inhibition, and Molecular Interaction Studies of Psoromic Acid in Mycobacterium tuberculosis: Efficacy and Safety Investigations. J. Clin. Med. 2018;7:226. doi: 10.3390/jcm7080226. PubMed DOI PMC
Hou X.M., Wang C.Y., Gerwick W.H., Shao C.L. Marine natural products as potential anti-tubercular agents. Eur. J. Med. Chem. 2019;165:273–292. doi: 10.1016/j.ejmech.2019.01.026. PubMed DOI
Zhang H., Tang Y., Zhang Y., Zhang S., Qu J., Wang X., Kong R., Han C., Liu Z. Fucoxanthin: A Promising Medicinal and Nutritional Ingredient. Evid. Based Complement. Altern. Med. 2015;2015:72351. doi: 10.1155/2015/723515. PubMed DOI PMC
Peng J., Yuan J.P., Wu C.F., Wang J.H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar. Drugs. 2011;9:1806–1828. doi: 10.3390/md9101806. PubMed DOI PMC
Yan X., Chuda Y., Suzuki M., Nagata T. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci. Biotechnol. Biochem. 1999;63:605–607. doi: 10.1271/bbb.63.605. PubMed DOI
D’Orazio N., Gemello E., Gammone M.A., de Girolamo M., Ficoneri C., Riccioni G. Fucoxantin: A treasure from the sea. Mar. Drugs. 2012;10:604–616. doi: 10.3390/md10030604. PubMed DOI PMC
Foo S.C., Yusoff F.M., Ismail M., Basri M., Yau S.K., Khong N.M.H., Chan K.W., Ebrahimi M. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J. Biotechnol. 2017;241:175–183. doi: 10.1016/j.jbiotec.2016.11.026. PubMed DOI
Garg S., Afzal S., Elwakeel A., Sharma D., Radhakrishnan N., Dhanjal J.K., Sundar D., Kaul S.C., Wadhwa R. Marine Carotenoid Fucoxanthin Possesses Anti-Metastasis Activity: Molecular Evidence. Mar. Drugs. 2019;17:338. doi: 10.3390/md17060338. PubMed DOI PMC
Koo S.Y., Hwang J.H., Yang S.H., Um J.I., Hong K.W., Kang K., Pan C.H., Hwang K.T., Kim S.M. Anti-obesity effect of standardized extract of microalga Phaeodactylum tricornutum containing fucoxanthin. Mar. Drugs. 2019;17:311. doi: 10.3390/md17050311. PubMed DOI PMC
Muradian K., Vaiserman A., Min K.J., Fraifeld V.E. Fucoxanthin and lipid metabolism: A minireview. Nutr. Metab. Card. Dis. 2015;25:891–897. doi: 10.1016/j.numecd.2015.05.010. PubMed DOI
Gammone M.A., D’Orazio N. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar. Drugs. 2015;13:2196–2214. doi: 10.3390/md13042196. PubMed DOI PMC
D’Orazio N., Gammone M.A., Gemello E., De Girolamo M., Cusenza S., Riccioni G. Marine bioactives. Pharmacological properties and potential applications against inflammatory diseases. Mar. Drugs. 2012;10:812–833. doi: 10.3390/md10040812. PubMed DOI PMC
Clinical and Laboratory Standards Institute . Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes. 2nd ed. CLSI; Wayne, PA, USA: 2011. Approved Standard M24-A2. PubMed
Liu Z., Sun X., Sun X., Wang S., Xu Y. Fucoxanthin isolated from Undaria pinnatifida can interact with Escherichia coli and lactobacilli in the intestine and inhibit the growth of pathogenic bacteria. J. Ocean Univ. China. 2019;18:926–932. doi: 10.1007/s11802-019-4019-y. DOI
Shannon E., Abu-Ghannam N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Mar. Drugs. 2016;14:81. doi: 10.3390/md14040081. PubMed DOI PMC
Pérez M.J., Falqué E., Domínguez H. Antimicrobial action of compounds from marine seaweed. Mar. Drugs. 2016;14:52. doi: 10.3390/md14030052. PubMed DOI PMC
Karpiński T.M., Adamczak A. Fucoxanthin-An Antibacterial Carotenoid. Antioxidants. 2019;8:239. doi: 10.3390/antiox8080239. PubMed DOI PMC
Hassan S.T.S., Berchová-Bímová K., Petráš J. Plumbagin, a Plant-Derived Compound, Exhibits Antifungal Combinatory Effect with Amphotericin B against Candida albicans Clinical Isolates and Anti-Hepatitis C Virus Activity. Phytother. Res. 2016;30:1487–1492. doi: 10.1002/ptr.5650. PubMed DOI
Feng X., Sureda A., Jafari S., Memariani Z., Tewari D., Annunziata G., Barrea L., Hassan S.T.S., Šmejkal K., Malaník M., et al. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics. 2019;9:1923–1951. doi: 10.7150/thno.30787. PubMed DOI PMC
Hou L.L., Gao C., Chen L., Hu G.Q., Xie S.Q. Essential role of autophagy in fucoxanthin-induced cytotoxicity to human epithelial cervical cancer HeLa cells. Acta Pharm. Sin. 2013;34:1403–1410. doi: 10.1038/aps.2013.90. PubMed DOI PMC
Hosokawa M., Wanezaki S., Miyauchi K., Kurihara H., Kohno H., Kawabata J., Takahashi K. Apoptosis-inducing effect of fucoxanthin on human leukemia cell HL-60. Food Sci. Technol. Res. 1999;5:243–246. doi: 10.3136/fstr.5.243. DOI
Kim K.N., Heo S.J., Kang S.M., Ahn G., Jeon Y.J. Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. Toxicol. In Vitro. 2010;24:1648–1654. doi: 10.1016/j.tiv.2010.05.023. PubMed DOI
Rokkaku T., Kimura R., Ishikawa C., Yasumoto T., Senba M., Kanaya F., Mori N. Anticancer effects of marine carotenoids, fucoxanthin and its deacetylated product, fucoxanthinol, on osteosarcoma. Int. J. Oncol. 2013;43:1176–1186. doi: 10.3892/ijo.2013.2019. PubMed DOI
Kim S.K., Pangestuti R. Biological activities and potential health benefits of fucoxanthin derived from marine brown algae. Adv. Food Nutr. Res. 2011;64:111–128. PubMed
Chodisetti S.B., Rai P.K., Gowthaman U., Pahari S., Agrewala J.N. Potential T cell epitopes of Mycobacterium tuberculosis that can instigate molecular mimicry against host: Implications in autoimmune pathogenesis. BMC Immunol. 2012;13:13. doi: 10.1186/1471-2172-13-13. PubMed DOI PMC
Ugarte-Gil C., Carrillo-Larco R.M., Kirwan D.E. Latent tuberculosis infection and non-infectious co-morbidities: Diabetes mellitus type 2, chronic kidney disease and rheumatoid arthritis. Int. J. Infect. Dis. 2019;80:29–31. doi: 10.1016/j.ijid.2019.02.018. PubMed DOI
Tursi S.A., Lee E.Y., Medeiros N.J., Lee M.H., Nicastro L.K., Buttaro B., Gallucci S., Wilson R.P., Wong G.C.L., Tükel Ç. Bacterial amyloid curli acts as a carrier for DNA to elicit an autoimmune response via TLR2 and TLR9. PLoS Pathog. 2017;13:e1006315. doi: 10.1371/journal.ppat.1006315. PubMed DOI PMC
Elkington P., Tebruegge M., Mansour S. Tuberculosis: An Infection-Initiated Autoimmune Disease? Trends Immunol. 2016;37:815–818. doi: 10.1016/j.it.2016.09.007. PubMed DOI PMC
Shapira Y., Agmon-Levin N., Shoenfeld Y. Mycobacterium tuberculosis, autoimmunity, and vitamin D. Clin. Rev. Allergy Immunol. 2010;38:169–177. doi: 10.1007/s12016-009-8150-1. PubMed DOI
Dubaniewicz A. Mycobacterium tuberculosis heat shock proteins and autoimmunity in sarcoidosis. Autoimmun. Rev. 2010;9:419–424. doi: 10.1016/j.autrev.2009.11.015. PubMed DOI
Nicastro L., Tükel Ç. Bacterial Amyloids: The Link between Bacterial Infections and Autoimmunity. Trends Microbiol. 2019;27:954–963. doi: 10.1016/j.tim.2019.07.002. PubMed DOI PMC
Borrelli S., Zandberg W.F., Mohan S., Ko M., Martinez-Gutierrez F., Partha S.K., Sanders D.A., Av-Gay Y., Pinto B.M. Antimycobacterial activity of UDP-galactopyranose mutase inhibitors. Int. J. Antimicrob. Agents. 2010;36:364–368. doi: 10.1016/j.ijantimicag.2010.06.030. PubMed DOI
Villaume S.A., Fu J., N’Go I., Liang H., Lou H., Kremer L., Pan W., Vincent S.P. Natural and Synthetic Flavonoids as Potent Mycobacterium tuberculosis UGM Inhibitors. Chemistry. 2017;23:10423–10429. doi: 10.1002/chem.201701812. PubMed DOI
Turiján-Espinoza E., Salazar-González R.A., Uresti-Rivera E.E.L., Hernández-Hernández G.E., Ortega-Juárez M., Milán R., Portales-Pérez D. A pilot study of the modulation of sirtuins on arylamine N-acetyltransferase 1 and 2 enzymatic activity. Acta Pharm. Sin. B. 2018;8:188–199. doi: 10.1016/j.apsb.2017.11.008. PubMed DOI PMC
Francis S., Laurieri N., Nwokocha C., Delgoda R. Treatment of Rats with Apocynin Has Considerable Inhibitory Effects on Arylamine N-Acetyltransferase Activity in the Liver. Sci. Rep. 2016;6:26906. doi: 10.1038/srep26906. PubMed DOI PMC
Madikane V.E., Bhakta S., Russell A.J., Campbell W.E., Claridge T.D., Elisha B.G., Davies S.G., Smith P., Sim E. Inhibition of mycobacterial arylamine N-acetyltransferase contributes to anti-mycobacterial activity of Warburgia salutaris. Bioorg. Med. Chem. 2007;15:3579–3586. doi: 10.1016/j.bmc.2007.02.011. PubMed DOI
Kukongviriyapan V., Phromsopha N., Tassaneeyakul W., Kukongviriyapan U., Sripa B., Hahnvajanawong V., Bhudhisawasdi V. Inhibitory effects of polyphenolic compounds on human arylamine N-acetyltransferase 1 and 2. Xenobiotica. 2006;36:15–28. doi: 10.1080/00498250500489901. PubMed DOI
Van Straaten K.E., Kuttiyatveetil J.R., Sevrain C.M., Villaume S.A., Jiménez-Barbero J.S., Linclau B., Vincent S.P.P., Sanders D.A. Structural basis of ligand binding to UDP-galactopyranose mutase from Mycobacterium tuberculosis using substrate and tetrafluorinated substrate analogues. J. Am. Chem. Soc. 2015;137:1230–1244. doi: 10.1021/ja511204p. PubMed DOI
Abuhammad A., Lowe E.D., McDonough M.A., Shaw Stewart P.D., Kolek S.A., Sim E., Garman E.F. Structure of arylamine N-acetyltransferase from Mycobacterium tuberculosis determined by cross-seeding with the homologous protein from M. marinum: Triumph over adversity. Acta Cryst. D Biol. Cryst. 2013;69:1433–1446. doi: 10.1107/S0907444913015126. PubMed DOI
Abuhammad A., Fullam E., Lowe E.D., Staunton D., Kawamura A., Westwood I.M., Bhakta S., Garner A.C., Wilson D.L., Seden P.T. Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: An essential enzyme for mycobacterial survival inside macrophages. PLoS ONE. 2012;7:e52790. doi: 10.1371/journal.pone.0052790. PubMed DOI PMC
Clinical and Laboratory Standards Institute . Laboratory Detection and Identification of Mycobacteria. 1st ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2008. Approved Guideline; CLSI Document M48-A.
Semelková L., Janošcová P., Fernandes C., Bouz G., Janďourek O., Konečná K., Paterová P., Navrátilová L., Kuneš J., Doležal M. Design, synthesis, antimycobacterial evaluation, and in silico studies of 3-(phenylcarbamoyl)-pyrazine-2-carboxylic acids. Molecules. 2017;22:1491. doi: 10.3390/molecules22091491. PubMed DOI PMC
Partha S.K., Sadeghi-Khomami A., Slowski K., Kotake T., Thomas N.R., Jakeman D.L., Sanders D.A. Chemoenzymatic synthesis, inhibition studies, and x-ray crystallographic analysis of the phosphono analog of UDP-galp as an inhibitor and mechanistic probe for UDP-galactopyranose mutase. J. Mol. Biol. 2010;403:578–590. doi: 10.1016/j.jmb.2010.08.053. PubMed DOI
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Zhang Q., Liu H.W. Studies of UDP-galactopyranose mutase from Escherichia coli: An unusual role of reduced fad in its catalysis. J. Am. Chem. Soc. 2000;122:9065–9070. doi: 10.1021/ja001333z. DOI
Veerapen N., Yuan Y., Sanders D.A., Pinto B.M. Synthesis of novel ammonium and selenonium ions and their evaluation as inhibitors of udp-galactopyranose mutase. Carbohydr. Res. 2004;339:2205–2217. doi: 10.1016/j.carres.2004.07.012. PubMed DOI
Abuhammad A., Lack N., Schweichler J., Staunton D., Sim R.B., Sim E. Improvement of the expression and purification of Mycobacterium tuberculosis arylamine N-acetyltransferase (TBNAT) a potential target for novel anti-tubercular agents. Protein Expr. Purif. 2011;80:246–252. doi: 10.1016/j.pep.2011.06.021. PubMed DOI
Brooke E.W., Davies S.G., Mulvaney A.W., Pompeo F., Sim E., Vickers R.J. An approach to identifying novel substrates of bacterial arylamine N-acetyltransferases. Bioorg. Med. chem. 2003;11:1227–1234. doi: 10.1016/S0968-0896(02)00642-9. PubMed DOI
Hassan S.T.S., Švajdlenka E. Biological evaluation and molecular docking of protocatechuic acid from Hibiscus sabdariffa L. As a potent urease inhibitor by an ESI-MS based method. Molecules. 2017;22:1696. doi: 10.3390/molecules22101696. PubMed DOI PMC
Biovia D.S. Discovery Studio Modeling Environment. Dassault Systèmes; San Diego, CA, USA: 2016.