Design, Synthesis, Antimycobacterial Evaluation, and In Silico Studies of 3-(Phenylcarbamoyl)-pyrazine-2-carboxylic Acids

. 2017 Sep 07 ; 22 (9) : . [epub] 20170907

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28880230

Pyrazinamide, the first-line antitubercular drug, has been regarded the basic component of tuberculosis treatment for over sixty years. Researchers have investigated its effect on Mycobacterium tuberculosis for this long time, and as a result, new potential targets of pyrazinamide or its active form, pyrazinoic acid, have been found. We have designed and prepared 3-(phenyl-carbamoyl)pyrazine-2-carboxylic acids as more lipophilic derivatives of pyrazinoic acid. We also prepared methyl and propyl derivatives as prodrugs with further increased lipophilicity. Antimycobacterial, antibacterial and antifungal growth inhibiting activity was investigated in all prepared compounds. 3-[(4-Nitrophenyl)carbamoyl]pyrazine-2-carboxylic acid (16) exerted high antimycobacterial activity against Mycobacterium tuberculosis H37Rv with MIC = 1.56 μg·mL-1 (5 μM). Propyl 3-{[4-(trifluoromethyl)phenyl]carbamoyl}pyrazine-2-carboxylate (18a) showed also high antimycobacterial activity against Mycobacterium tuberculosis H37Rv with MIC = 3.13 μg·mL-1. In vitro cytotoxicity of the active compounds was investigated and no significant cytotoxic effect was observed. Based to structural similarity to known inhibitors of decaprenylphosphoryl-β-d-ribose oxidase, DprE1, we performed molecular docking of the prepared acids to DprE1. These in silico experiments indicate that modification of the linker connecting aromatic parts of molecule does not have any negative influence on the binding.

Zobrazit více v PubMed

Singh P., Mishra A.K., Malonia S.K., Chauhan D.S., Sharma V.D., Venkatesan K., Katoch V.M. The paradox of pyrazinamide: An update on the molecular mechanisms of pyrazinamide resistance in Mycobacteria. J. Commun. Dis. 2006;38:288–298. PubMed

World Health Organization . Global Tuberculosis Report 2016. World Health Organization; Geneva, Switzerland: 2016. WHA68/2015/REC/1.

Heifets L., Lindholm-Levy P. Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am. Rev. Respir. Dis. 1992;145:1223–1225. doi: 10.1164/ajrccm/145.5.1223. PubMed DOI

Stehr M., Elamin A.A., Singh M. Filling the pipeline—New drugs for an old disease. Curr. Top. Med. Chem. 2014;14:110–129. doi: 10.2174/1568026613666131113152908. PubMed DOI

Zhang Y., Mitchison D. The curious characteristics of pyrazinamide: A review. Int. J. Tuberc. Lung Dis. 2003;7:6–21. PubMed

Zhang Y., Wade M.M., Scorpio A., Zhang H., Sun Z. Mode of action of pyrazinamide: Disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 2003;52:790–795. doi: 10.1093/jac/dkg446. PubMed DOI

Peterson N.D., Rosen B.C., Dillon N.A., Baughn A.D. Uncoupling environmental pH and intrabacterial acidification from pyrazinamide susceptibility in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2015;59:7320–7326. doi: 10.1128/AAC.00967-15. PubMed DOI PMC

Sayahi H., Pugliese K.M., Zimhony O., Jacobs W.R., Jr., Shekhtman A., Welch J.T. Analogs of the antituberculous agent pyrazinamide are competitive inhibitors of NADPH binding to M. tuberculosis fatty acid synthase I. Chem. Biodivers. 2012;9:2582–2596. doi: 10.1002/cbdv.201200291. PubMed DOI

Shi W., Chen J., Feng J., Cui P., Zhang S., Weng X., Zhang W., Zhang Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2014;3:e58. doi: 10.1038/emi.2014.61. PubMed DOI PMC

Dillon N.A., Peterson N.D., Rosen B.C., Baughn A.D. Pantothenate and pantetheine antagonize the antitubercular activity of pyrazinamide. Antimicrob. Agents Chemother. 2014;58:7258–7263. doi: 10.1128/AAC.04028-14. PubMed DOI PMC

Shi W., Zhang X., Jiang X., Yuan H., Lee J.S., Barry C.E., III, Wang H., Zhang W., Zhang Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science. 2011;333:1630–1632. doi: 10.1126/science.1208813. PubMed DOI PMC

Keiler K.C. Biology of trans-translation. Annu. Rev. Microbiol. 2008;62:133–151. doi: 10.1146/annurev.micro.62.081307.162948. PubMed DOI

Yang J., Liu Y., Bi J., Cai Q., Liao X., Li W., Guo C., Zhang Q., Lin T., Zhao Y., et al. Structural basis for targeting the ribosomal protein S1 of Mycobacterium tuberculosis by pyrazinamide. Mol. Microbiol. 2015;95:791–803. doi: 10.1111/mmi.12892. PubMed DOI

Salah P., Bisaglia M., Aliprandi P., Uzan M., Sizun C., Bontems F. Probing the relationship between Gram-negative and Gram-positive S1 proteins by sequence analysis. Nucleic Acids Res. 2009;37:5578–5588. doi: 10.1093/nar/gkp547. PubMed DOI PMC

Dolezal M., Zitko J., Kesetovicova D., Kunes J., Svobodova M. Substituted N-phenylpyrazine-2-carboxamides: Synthesis and antimycobacterial evaluation. Molecules. 2009;14:4180–4189. doi: 10.3390/molecules14104180. PubMed DOI PMC

Servusova B., Vobickova J., Paterova P., Kubicek V., Kunes J., Dolezal M., Zitko J. Synthesis and antimycobacterial evaluation of N-substituted 5-chloropyrazine-2-carboxamides. Bioorg. Med. Chem. Lett. 2013;23:3589–3591. doi: 10.1016/j.bmcl.2013.04.021. PubMed DOI

Zitko J., Franco F., Paterova P. Synthesis and anti-infective evaluation of 5-amino-N-phenylpyrazine-2-carboxamides. Ceska Slov. Farm. 2015;64:19–24. PubMed

Neres J., Hartkoorn R.C., Chiarelli L.R., Gadupudi R., Pasca M.R., Mori G., Venturelli A., Savina S., Makarov V., Kolly G.S., et al. 2-Carboxyquinoxalines kill Mycobacterium tuberculosis through noncovalent inhibition of DprE1. ACS Chem. Biol. 2015;10:705–714. doi: 10.1021/cb5007163. PubMed DOI

Riccardi G., Pasca M.R., Chiarelli L.R., Manina G., Mattevi A., Binda C. The DprE1 enzyme, one of the most vulnerable targets of Mycobacterium tuberculosis. Appl. Microbiol. Biotechnol. 2013;97:8841–8848. doi: 10.1007/s00253-013-5218-x. PubMed DOI

Wolucka B.A. Biosynthesis of D-arabinose in mycobacteria—A novel bacterial pathway with implications for antimycobacterial therapy. FEBS J. 2008;275:2691–2711. doi: 10.1111/j.1742-4658.2008.06395.x. PubMed DOI

Makarov V., Manina G., Mikusova K., Mollmann U., Ryabova O., Saint-Joanis B., Dhar N., Pasca M.R., Buroni S., Lucarelli A.P., et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science. 2009;324:801–804. doi: 10.1126/science.1171583. PubMed DOI PMC

Shirude P.S., Shandil R., Sadler C., Naik M., Hosagrahara V., Hameed S., Shinde V., Bathula C., Humnabadkar V., Kumar N., et al. Azaindoles: Noncovalent DprE1 inhibitors from scaffold morphing efforts, kill Mycobacterium tuberculosis and are efficacious in vivo. J. Med. Chem. 2013;56:9701–9708. doi: 10.1021/jm401382v. PubMed DOI

Naik M., Humnabadkar V., Tantry S.J., Panda M., Narayan A., Guptha S., Panduga V., Manjrekar P., Jena L.K., Koushik K., et al. 4-Aminoquinolone piperidine amides: Noncovalent inhibitors of DprE1 with long residence time and potent antimycobacterial activity. J. Med. Chem. 2014;57:5419–5434. doi: 10.1021/jm5005978. PubMed DOI

Panda M., Ramachandran S., Ramachandran V., Shirude P.S., Humnabadkar V., Nagalapur K., Sharma S., Kaur P., Guptha S., Narayan A., et al. Discovery of pyrazolopyridones as a novel class of noncovalent DprE1 inhibitor with potent anti-mycobacterial activity. J. Med. Chem. 2014;57:4761–4771. doi: 10.1021/jm5002937. PubMed DOI

Makarov V., Neres J., Hartkoorn R.C., Ryabova O.B., Kazakova E., Sarkan M., Huszar S., Piton J., Kolly G.S., Vocat A., et al. The 8-pyrrole-benzothiazinones are noncovalent inhibitors of DprE1 from Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2015;59:4446–4452. doi: 10.1128/AAC.00778-15. PubMed DOI PMC

Chikhale R., Menghani S., Babu R., Bansode R., Bhargavi G., Karodia N., Rajasekharan M.V., Paradkar A., Khedekar P. Development of selective DprE1 inhibitors: Design, synthesis, crystal structure and antitubercular activity of benzothiazolylpyrimidine-5-carboxamides. Eur. J. Med. Chem. 2015;96:30–46. doi: 10.1016/j.ejmech.2015.04.011. PubMed DOI

Saudi M., Zmurko J., Kaptein S., Rozenski J., Neyts J., Van Aerschot A. Synthesis and evaluation of imidazole-4,5-and pyrazine-2,3-dicarboxamides targeting dengue and yellow fever virus. Eur. J. Med. Chem. 2014;87:529–539. doi: 10.1016/j.ejmech.2014.09.062. PubMed DOI PMC

Holzer W., Eller G.A., Datterl B., Habicht D. Derivatives of pyrazinecarboxylic acid: H-1, C-13 and N-15 NMR spectroscopic investigations. Magn. Reson. Chem. 2009;47:617–624. doi: 10.1002/mrc.2437. PubMed DOI

Salfinger M., Heifets L.B. Determination of Pyrazinamide MICs for Mycobacterium-tuberculosis at different pHs by the radiometric method. Antimicrob. Agents Chemother. 1988;32:1002–1004. doi: 10.1128/AAC.32.7.1002. PubMed DOI PMC

Zhang Y., Permar S., Sun Z.H. Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J. Med. Microbiol. 2002;51:42–49. doi: 10.1099/0022-1317-51-1-42. PubMed DOI

Vaughan G.B., Rose J.C., Brown G.P. Polyimides Based on Pyrazinetetracarboxylic dianhydride and some related model compounds. J. Polym. Sci. A1. 1971;9:1117–1138. doi: 10.1002/pol.1971.150090422. DOI

Roehrig S., Jeske M., Akbaba M., Rosentreter U., Boyer S., Fischer K., Pohlmann J., Tuch A., Perzborn E., Gerdes C., et al. Pyrazine Dicarboxamides and the Use Thereof. WO2006061116 (A1) Patent. 2006 Jun 15;

Mackerell A., Jr., Zhang H., Osterman A., Kolhatkar R. Targeting NAD Biosynthesis in Bacterial Pathogens. WO2011006158 (A2) Patent. 2011 Jan 13;

Lui Y., Li J., Bi K., Liu L. Preparing Method for N-substituted Pyrrolo [3,4-B] pyrazine-5,7(6H)-diketone. CN106220630 (A) Patent. 2016 Dec 14;

Leban J., Kramer B., Saeb W., Garcia G. Novel Compounds as Anti-Inflammatory, Immunomodulatory and Anti-Proliferatory Agents. 2003203951 (A1) U.S. Patent. 2003 Jan 23;

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace