Increased pupal temperature has reversible effects on thermal performance and irreversible effects on immune system and fecundity in adult ladybirds
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37573399
PubMed Central
PMC10423239
DOI
10.1038/s42003-023-05196-0
PII: 10.1038/s42003-023-05196-0
Knihovny.cz E-zdroje
- MeSH
- aklimatizace * MeSH
- brouci * MeSH
- fertilita MeSH
- imunitní systém MeSH
- kukla MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The environmental conditions an organism encounters during development vary in their lasting impact on adult phenotypes. In the context of ongoing climate change, it is particularly relevant to understand how high developmental temperatures can impact adult traits, and whether these effects persist or diminish during adulthood. Here, we assessed the effects of pupal temperature (17 °C - normal temperature, 26 °C - increased temperature, or 35 °C - heat wave) on adult Harmonia axyridis thermal stress tolerance, immune function, starvation resistance, and fecundity. The temperature during pupation significantly affected all investigated traits in fresh adults. Heat acclimation decreased adult haemocyte concentration, cold tolerance, and total egg production, and had a positive effect on heat tolerance and starvation resistance. The negative effects of heat acclimation on cold tolerance diminished after seven days. In contrast, heat acclimation had a lasting positive effect on adult heat tolerance. Our results provide a broad assessment of the effects of developmental thermal acclimation on H. axyridis adult phenotypes. The relative plasticity of several adult traits after thermal acclimation may be consequential for the future geographic distribution and local performance of various insect species.
Zobrazit více v PubMed
Angilletta, M. J. Thermal adaptation: a theoretical and empirical synthesis. 10.1093/acprof:oso/9780198570875.001.1. (2009).
Chown SL, Terblanche JS. Physiological diversity in insects: ecological and evolutionary contexts. Adv. Insect Phys. 2006;33:50–152. PubMed PMC
Lee, J.-Y. et al. Future global climate: scenario-based projections and near-term information. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.) 553–672 (Cambridge University Press, 2021). 10.1017/9781009157896.006.
Halsch CA, et al. Insects and recent climate change. Proc. Natl Acad. Sci. USA. 2021;118:1–9. PubMed PMC
Hoffmann AA, Sørensen JG, Loeschcke V. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol. 2003;28:175–216.
Pigliucci M, Murrenm C, Schlichting CD. Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 2006;209:2362–2367. PubMed
West-Eberhard MJ. Developmental plasticity and the origin of species differences. Proc. Natl Acad. Sci. USA. 2005;102:6543–6549. PubMed PMC
Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B Biol. Sci. 282, 20150401 (2015). PubMed PMC
Huey RB, Berrigan D, Gilchr GW, Herron JC. Testing the adaptive significance of acclimation: a strong inference approach. Am. Zool. 1999;39:323–336.
Lagerspetz KYH. What is thermal acclimation? J. Therm. Biol. 2006;31:332–336.
Mutamiswa R, Machekano H, Chidawanyika F, Nyamukondiwa C. Life-stage related responses to combined effects of acclimation temperature and humidity on the thermal tolerance of Chilo partellus (Sweinhoe) (Lepidoptera: Crambidae) J. Therm. Biol. 2019;75:85–94. PubMed
Gray EM. Thermal acclimation in a complex life cycle: the effects of larval and adult thermal conditions on metabolic rate and heat resistance in Culex pipiens (Diptera: Culicidae) J. Insect Physiol. 2013;59:1001–1007. PubMed
Degut, A. et al. Irreversible impact of early thermal conditions: an integrative study of developmental plasticity linked to mobility in a butterfly species. J. Exp. Biol. 225, jeb243724 (2022). PubMed
Burggren WW. Phenotypic switching resulting from developmental plasticity: fixed or reversible? Front. Physiol. 2020;10:1–13. PubMed PMC
Shinner R, Terblanche JS, Clusella-Trullas S. Across-stage consequences of thermal stress have trait-specific effects and limited fitness costs in the harlequin ladybird, Harmonia axyridis. Evol. Ecol. 2020;34:555–572.
Wilson RS, Franklin CE, Franklin CE. Testing the beneficial acclimation hypothesis. Trends Ecol. Evol. 2002;17:66–70.
Slotsbo S, Schou MF, Kristensen TN, Loeschcke V, Sørensen JG. Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance. J. Exp. Biol. 2016;219:2726–2732. PubMed
Brown PMJ, et al. The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. BioControl. 2011;56:623–641.
Knapp M. Emergence of sexual size dimorphism and stage-specific effects of elevated temperature on growth rate and development rate in. Harmonia Axyridis. Physiol. Entomol. 2014;39:341–347.
Castro CF, Almeida LM, Penteado SRC. The impact of temperature on biological aspects and life table of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) Fla. Entomol. 2011;94:923–932.
Islam, Y. et al. Functional response of Harmonia axyridis preying on Acyrthosiphon pisum nymphs: the effect of temperature. Sci. Rep. 11, 13565 (2021). PubMed PMC
Lamana ML, Miller JC. Temperature-dependent development in an Oregon population of Harmonia axyridis (Coleoptera: Coccinellidae) Environ. Entomol. 1998;27:1001–1005.
Knapp, M. & Nedvěd, O. Gender and timing during ontogeny matter: Effects of a temporary high temperature on survival, body size and colouration in Harmonia axyridis. PLoS One8, e74984 (2013). PubMed PMC
Sloggett JJ. Aphidophagous ladybirds (Coleoptera: Coccinellidae) and climate change: a review. Insect Conserv. Divers. 2021;14:709–722.
Boher F, Jaksic FM, Martel SI, Orellana MJ, Bozinovic F. Does thermal physiology explain the ecological and evolutionary success of invasive species? Lessons from ladybird beetles. Aegyptus. 2018;19:243–255.
Knapp M, Vernon P, Renault D. Studies on chill coma recovery in the ladybird, Harmonia axyridis: Ontogenetic profile, effect of repeated cold exposures, and capacity to predict winter survival. J. Therm. Biol. 2018;74:275–280. PubMed
Řeřicha M, Dobeš P, Knapp M. Changes in haemolymph parameters and insect ability to respond to immune challenge during overwintering. Ecol. Evol. 2021;11:4267–4275. PubMed PMC
Knapp, M., Řeřicha, M., Haelewaters, D. & González, E. Fungal ectoparasites increase winter mortality of ladybird hosts despite limited effects on their immune system. Proc. R. Soc. B Biol. Sci. 289, 20212538 (2022). PubMed PMC
Awad M, Nedvědová J, Nedvěd O. Thermal plasticity of antioxidative activity in fresh adults of Harmonia axyridis (Coleoptera: Coccinellidae) Afr. Entomol. 2021;29:125–132.
Beaulieu M, Geiger RE, Reim E, Zielke L, Fischer K. Reproduction alters oxidative status when it is traded-off against longevity. Evolution. 2015;69:1786–1796. PubMed
Rousi E, Kornhuber K, Beobide-Arsuaga G, Luo F, Coumou D. Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 2022;13:3851. PubMed PMC
Prodhomme C, et al. Seasonal prediction of European summer heatwaves. Clim. Dyn. 2022;58:2149–2166.
Iltis C, Louâpre P, Vogelweith F, Thiéry D, Moreau J. How to stand the heat? Post-stress nutrition and developmental stage determine insect response to a heat wave. J. Insect Physiol. 2021;131:0–2. PubMed
Wojda I. Temperature stress and insect immunity. J. Therm. Biol. 2017;68:96–103. PubMed
Sinclair BJ, Ferguson LV, Salehipour-Shirazi G, Macmillan HA. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integr. Comp. Biol. 2013;53:545–556. PubMed
Rodgers EM, Gomez Isaza DF. Harnessing the potential of cross-protection stressor interactions for conservation: a review. Conserv. Physiol. 2021;9:1–27. PubMed PMC
Zhang S, Cao Z, Wang Q, Zhang F, Liu TX. Exposing eggs to high temperatures affects the development, survival and reproduction of Harmonia axyridis. J. Therm. Biol. 2014;39:40–44.
Jang T, Lee KP. Context-dependent effects of temperature on starvation resistance in Drosophila melanogaster: mechanisms and ecological implications. J. Insect Physiol. 2018;110:6–12. PubMed
Pijpe J, Brakefield PM, Zwaan BJ. Phenotypic plasticity of starvation resistance in the butterfly Bicyclus anynana. Evol. Ecol. 2007;21:589–600.
Marshall KE, Sinclair BJ. The impacts of repeated cold exposure on insects. J. Exp. Biol. 2012;215:1607–1613. PubMed
Marshall KE, Sinclair BJ. Repeated stress exposure results in a survival-reproduction trade-off in. Drosoph. Melanogaster. Proc. R. Soc. B Biol. Sci. 2010;277:963–969. PubMed PMC
Lin YJ, Seroude L, Benzer S. Extended life-span and stress resistance in the Drosophila mutant methuselah. Science. 1998;282:943–946. PubMed
Partridge L, Prowse N, Pignatelli P. Another set of responses and correlated responses to selection on age at reproduction in. Drosoph. Melanogaster. Proc. R. Soc. B Biol. Sci. 1999;266:255–261. PubMed PMC
Ben-Yosef M, et al. Effects of thermal acclimation on the tolerance of Bactrocera zonata (Diptera: Tephritidae) to hydric stress. Front. Physiol. 2021;12:686424. PubMed PMC
Shen Q, et al. Cloning three Harmonia axyridis (Coleoptera: Coccinellidae) heat shock protein 70 family genes: regulatory function related to heat and starvation stress. J. Entomol. Sci. 2015;50:168–185.
Green CK, Moore PJ, Sial AA. Impact of heat stress on development and fertility of Drosophila suzukii Matsumura (Diptera: Drosophilidae) J. Insect Physiol. 2019;114:45–52. PubMed
Bowler K, Terblanche JS. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol. Rev. 2008;83:339–355. PubMed
Nyamukondiwa, C., Terblanche, J. S., Marshall, K. E. & Sinclair, B. J. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera : Drosophilidae). 24, 1927–1938 (2011). PubMed
Lecheta MC, et al. Integrating GWAS and Transcriptomics to identify the molecular underpinnings of thermal stress responses in. Drosoph. Melanogaster. Front. Genet. 2020;11:658. PubMed PMC
Klok CJ, Chown SL. Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic kelp fly, Paractora dreuxi (Lepidoptera: Tineidae) J. Insect Physiol. 1997;43:685–694. PubMed
Zeilstra I, Fischer K. Cold tolerance in relation to developmental and adult temperature in a butterfly. Physiol. Entomol. 2005;30:92–95.
Terblanche JS, Chown SL. The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae) J. Exp. Biol. 2006;209:1064–1073. PubMed PMC
Jean David R, et al. Cold stress tolerance in Drosophila: analysis of chill coma recovery. D. Melanogaster. J. Therm. Biol. 1998;23:291–299.
MacMillan HA, Walsh JP, Sinclair BJ. The effects of selection for cold tolerance on cross-tolerance to other environmental stressors in Drosophila melanogaster. Insect Sci. 2009;16:263–276.
Jørgensen LB, Malte H, Overgaard J. How to assess Drosophila heat tolerance: unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 2019;33:629–642.
Awde, D. N., Řeřicha, M. & Knapp, M. files - Increased pupal temperature has reversible effects on thermal performance and irreversible effects on immune system and fecundity in adult ladybirds [Data set]. Dryad 10.5061/dryad.1c59zw413 (2023). PubMed PMC
Knapp M, Dobeš P, Řeřicha M, Hyršl P. Puncture vs. reflex bleeding: Haemolymph composition reveals significant differences among ladybird species (Coleoptera: Coccinellidae), but not between sampling methods. Eur. J. Entomol. 2018;115:1–6.
Knapp, M., & Řeřicha, M. Effects of the winter temperature regime on survival, body mass loss and post-winter starvation resistance in laboratory-reared and field-collected ladybirds. Sci. Rep. 10, 4970 (2020). PubMed PMC
Dryad
10.5061/dryad.1c59zw413