Fungal ectoparasites increase winter mortality of ladybird hosts despite limited effects on their immune system

. 2022 Mar 30 ; 289 (1971) : 20212538. [epub] 20220323

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35317669

Winter represents a challenging period for insects inhabiting temperate regions. A plethora of studies have investigated how environmental conditions such as temperature affect insect overwintering success. However, only a few studies have focused on biotic factors and the mechanisms affecting the overwintering performance of insects. Here, we investigated the effects of the parasitic fungus Hesperomyces virescens on the overwintering performance and immune system functioning of the invasive ladybird Harmonia axyridis. Winter survival was significantly lower for infected than for uninfected ladybirds. Body mass loss during overwintering tends to be higher for infected individuals compared to uninfected ones and for larger ladybirds. In addition, parasitic infection reduced post-winter longevity without food in male but not female ladybirds. Total haemocyte and protein concentration as well as antimicrobial activity against Escherichia coli significantly decreased during ladybird overwintering. However, haemolymph parameters were only poorly affected by Hesperomyces infection, with the exception of antimicrobial activity against E. coli that tended to be higher in infected ladybirds. Interestingly, none of the pre-winter haemolymph parameters were good predictors of ladybird winter survival. Overall, our results indicate that energy exhaustion unrelated to immune system challenge is the most probable explanation for increased overwintering mortality in infected ladybirds.

Zobrazit více v PubMed

Bale JS, Hayward SAL. 2010. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980-994. (10.1242/jeb.037911) PubMed DOI

Leather S, Walters K, Bale J. 2003. The ecology of insect overwintering. Cambridge, UK: Cambridge University Press.

Toxopeus J, Sinclair BJ. 2018. Mechanisms underlying insect freeze tolerance. Biol. Rev. 93, 1891-1914. (10.1111/brv.12425) PubMed DOI

Williams CM, Henry HAL, Sinclair BJ. 2015. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214-235. (10.1111/brv.12105) PubMed DOI

Hahn DA, Denlinger DL. 2011. Energetics of insect diapause. Annu. Rev. Entomol. 56, 103-121. (10.1146/annurev-ento-112408-085436) PubMed DOI

Sinclair BJ. 2015. Linking energetics and overwintering in temperate insects. J. Therm. Biol. 54, 5-11. (10.1016/j.jtherbio.2014.07.007) PubMed DOI

Knapp M, Řeřicha M. 2020. Effects of the winter temperature regime on survival, body mass loss and post-winter starvation resistance in laboratory-reared and field-collected ladybirds. Sci. Rep. 10, 4970. (10.1038/s41598-020-61820-7) PubMed DOI PMC

Musolin DL, Tougou D, Fujisaki K. 2010. Too hot to handle? Phenological and life-history responses to simulated climate change of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). Glob. Change Biol. 16, 73-87. (10.1111/j.1365-2486.2009.01914.x) DOI

Xiao HJ, Chen JH, Chen LY, Chen C, Wu SH. 2017. Exposure to mild temperatures decreases overwintering larval survival and post-diapause reproductive potential in the rice stem borer Chilo suppressalis. J. Pest Sci. 90, 117-125. (10.1007/s10340-016-0769-0) DOI

Jakobs R, Gariepy TD, Sinclair BJ. 2015. Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. J. Insect. Physiol. 79, 1-9. (10.1016/j.jinsphys.2015.05.003) PubMed DOI

Martini X, Malfa K, Stockton D, Rivera MJ. In press. Cold acclimation increases Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) survival during exposure to freezing temperatures. Insect Sci. (10.1111/1744-7917.12936) PubMed DOI

Mercer NH, Teets NM, Bessin RT, Obrycki JJ. 2020. Supplemental foods affect energetic reserves, survival, and spring reproduction in overwintering adult Hippodamia convergens (Coleoptera: Coccinellidae). Environ. Entomol. 49, 1-9. (10.1093/ee/nvz137) PubMed DOI

Crandall RS, Jubb CS, Mayfield AE, Thompson B, McAvoy TJ, Salom SM, Elkinton JS. 2020. Rebound of Adelges tsugae spring generation following predation on overwintering generation ovisacs by the introduced predator Laricobius nigrinus in the eastern United States. Biol. Control 145, 104264. (10.1016/j.biocontrol.2020.104264) DOI

Ferguson LV, Sinclair BJ. 2017. Insect immunity varies idiosyncratically during overwintering. J. Exp. Zool. A-Ecol. Integr. Physiol. 327, 222-234. (10.1002/jez.2067) PubMed DOI

Loope KJ, Rankin EEW. 2021. Viral load, not food availability or temperature, predicts colony longevity in an invasive eusocial wasp with plastic life history. Sci. Rep. 11, 10087. (10.1038/s41598-021-89607-4) PubMed DOI PMC

Řeřicha M, Dobeš P, Knapp M. 2021. Changes in haemolymph parameters and insect ability to respond to immune challenge during overwintering. Ecol. Evol. 11, 4267-4275. (10.1002/ece3.7323) PubMed DOI PMC

Ferguson LV, Dhakal P, Lebenzon JE, Heinrichs DE, Bucking C, Sinclair BJ. 2018. Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Funct. Ecol. 32, 2357-2368. (10.1111/1365-2435.13153) DOI

Ferguson LV, Heinrichs DE, Sinclair BJ. 2016. Paradoxical acclimation responses in the thermal performance of insect immunity. Oecologia 181, 77-85. (10.1007/s00442-015-3529-6) PubMed DOI

Buchon N, Silverman N, Cherry S. 2014. Immunity in Drosophila melanogaster - from microbial recognition to whole-organism physiology. Nat. Rev. Immunol. 14, 796-810. (10.1038/nri3763) PubMed DOI PMC

Li J, Wang NX, Liu Y, Qiu SQ. 2018. Proteomics of Nasonia vitripennis and the effects of native Wolbachia infection on N. vitripennis. Peerj 6, e4905. (10.7717/peerj.4905) PubMed DOI PMC

Roy HE, et al. . 2016. The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology. Biol. Invasions 18, 997-1044. (10.1007/s10530-016-1077-6) DOI

Verheggen FJ, Vogel H, Vilcinskas A. 2017. Behavioral and immunological features promoting the invasive performance of the harlequin ladybird Harmonia axyridis. Front. Ecol. Evol. 5, 156. (10.3389/fevo.2017.00156) DOI

Ceryngier P, et al. . 2018. Predators and parasitoids of the harlequin ladybird, Harmonia axyridis, in its native range and invaded areas. Biol. Invasions 20, 1009-1031. (10.1007/s10530-017-1608-9) DOI

Knapp M, Řeřicha M, Maršíková S, Harabiš F, Kadlec T, Nedvěd O, Teder T. 2019. Invasive host caught up with a native parasitoid: field data reveal high parasitism of Harmonia axyridis by Dinocampus coccinellae in Central Europe. Biol. Invasions 21, 2795-2802. (10.1007/s10530-019-02027-4) DOI

Haelewaters D, Blackwell M, Pfister DH. 2021. Laboulbeniomycetes: intimate fungal associates of arthropods. Annu. Rev. Entomol. 66, 257-276. (10.1146/annurev-ento-013020-013553) PubMed DOI

Haelewaters D, De Kesel A, Pfister DH.. 2018. Integrative taxonomy reveals hidden species within a common fungal parasite of ladybirds. Sci. Rep. 8, 15966. (10.1038/s41598-018-34319-5) PubMed DOI PMC

Riddick EW, Schaefer PW. 2005. Occurrence, density, and distribution of parasitic fungus Hesperomyces virescens (Laboulbeniales: Laboulbeniaceae) on multicolored Asian lady beetle (Coleoptera: Coccinellidae). Ann. Entomol. Soc. Am. 98, 615-624. (10.1603/0013-8746(2005)098[0615:odadop]2.0.co;2) DOI

De Kesel A. 2011. Hesperomyces (Laboulbeniales) and Coccinellid hosts. Sterbeeckia 30, 32-37.

Fiedler L, Nedved O. 2019. Fifty shades of the harlequin ladybird and a sexually transmitted fungus. J. Insect Sci. 19, 10. (10.1093/jisesa/iez107) PubMed DOI PMC

Nalepa CA, Weir A. 2007. Infection of Harmonia axyridis (Coleoptera: Coccinellidae) by Hesperomyces virescens (Ascomycetes: Laboulbeniales): role of mating status and aggregation behavior. J. Invertebr. Pathol. 94, 196-203. (10.1016/j.jip.2006.11.002) PubMed DOI

Haelewaters D, Hiller T, Kemp EA, van Wielink PS, Shapiro-Ilan DI, Aime MC, Nedved O, Pfister DH, Cottrell TE. 2020. Mortality of native and invasive ladybirds co-infected by ectoparasitic and entomopathogenic fungi. Peerj 8, e10110. (10.7717/peerj.10110) PubMed DOI PMC

Qu S, Wang SB. 2018. Interaction of entomopathogenic fungi with the host immune system. Dev. Comp. Immunol. 83, 96-103. (10.1016/j.dci.2018.01.010) PubMed DOI

Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA. 2016. Entomopathogenic fungi: new insights into host-pathogen interactions. Adv. Genet. 94, 307-364. (10.1016/bs.adgen.2016.01.006) PubMed DOI

Ferguson LV, Kortet R, Sinclair BJ. 2018. Eco-immunology in the cold: the role of immunity in shaping the overwintering survival of ectotherms. J. Exp. Biol. 221, 163873. (10.1242/jeb.163873) PubMed DOI

Knapp M. 2016. Relative Importance of sex, pre-starvation body mass and structural body size in the determination of exceptional starvation resistance of Anchomenus dorsalis (Coleoptera: Carabidae). PLoS ONE 11, e0151459. (10.1371/journal.pone.0151459) PubMed DOI PMC

Knapp M, Řeřicha M, Haelewaters D, González E. 2022. Data from: Fungal ectoparasites increase winter mortality of ladybird hosts despite limited effects on their immune system. Dryad Digital Repository. (10.5061/dryad.jq2bvq8b6) PubMed DOI PMC

Kimura K, Hosoda N. 2021. Crucial role of framework with cytoskeletal actin filaments for shaping microstructure of footpad setae in the ladybird beetle, Harmonia axyridis. Arthropod. Struct. Dev. 60, 100998. (10.1016/j.asd.2020.100998) PubMed DOI

Knapp M, Dobeš P, Řeřicha M, Hyršl P. 2018. Puncture vs. reflex bleeding: haemolymph composition reveals significant differences among ladybird species (Coleoptera: Coccinellidae), but not between sampling methods. Eur. J. Entomol. 115, 1-6. (10.14411/eje.2018.001) DOI

Knapp M, Řeřicha M, Židlická D. 2020. Physiological costs of chemical defence: repeated reflex bleeding weakens the immune system and postpones reproduction in a ladybird beetle. Sci. Rep. 10, 9266. (10.1038/s41598-020-66157-9) PubMed DOI PMC

Vojtek L, Dobeš P, Buyukguzel E, Atosuo J, Hyršl P. 2014. Bioluminescent assay for evaluating antimicrobial activity in insect haemolymph. Eur. J. Entomol. 111, 335-340. (10.14411/eje.2014.045) DOI

Yi HY, Chowdhury M, Huang YD, Yu XQ. 2014. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98, 5807-5822. (10.1007/s00253-014-5792-6) PubMed DOI PMC

Auerswald L, Gade G. 2000. Metabolic changes in the African fruit beetle, Pachnoda sinuata, during starvation. J. Insect. Physiol. 46, 343-351. (10.1016/s0022-1910(99)00187-0) PubMed DOI

R Core Team. 2021. R: a language and environment for statistical computing, version 4.1.0. Vienna, Austria: R Foundation for Statistical Computing

Ripley B, et al. . 2011. Package ‘MASS’. See https://cran.r-project.org/web/packages/MASS.

Bates D, Sarkar D, Bates MD, Matrix L. 2007. The lme4 package. R Package Version 2, 74. See https://cran.r-project.org/web/packages/lme4/lme4.pdf.

Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D. 2021. performance: an R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139. (10.31234/osf.io/vtq8f) DOI

Wickham H. 2016. Ggplot2: elegant graphics for data analysis. New York, NY: Springer International Publishing.

Riddick EW. 2010. Ectoparasitic mite and fungus on an invasive lady beetle: parasite coexistence and influence on host survival. Bull. Insectology 63, 13-20.

Szentivanyi T, Haelewaters D, Radai Z, Mizsei E, Pfliegler WP, Bathori F, Tartally A, Christe P, Glaizot O. 2019. Climatic effects on the distribution of ant- and bat fly-associated fungal ectoparasites (Ascomycota, Laboulbeniales). Fungal Ecol. 39, 371-379. (10.1016/j.funeco.2019.03.003) DOI

Satterfield DA, Wright AE, Altizer S. 2013. Lipid reserves and immune defense in healthy and diseased migrating monarchs Danaus plexippus. Cur. Zool. 59, 393-402. (10.1093/czoolo/59.3.393) DOI

Weir A, Beakes GM. 1996. Correlative light- and scanning electron microscope studies on the developmental morphology of Hesperomyces virescens. Mycologia 88, 677-693. (10.2307/3760962) DOI

Knapp M, Knappová J. 2013. Measurement of body condition in a common carabid beetle, Poecilus cupreus: a comparison of fresh weight, dry weight, and fat content. J. Insect Sci. 13, 6. (10.1673/031.013.0601) PubMed DOI PMC

Wilder SM, Raubenheimer D, Simpson SJ. 2016. Moving beyond body condition indices as an estimate of fitness in ecological and evolutionary studies. Funct. Ecol. 30, 108-115. (10.1111/1365-2435.12460) DOI

Boggs CL. 2009. Understanding insect life histories and senescence through a resource allocation lens. Funct. Ecol. 23, 27-37. (10.1111/j.1365-2435.2009.01527.x) DOI

Graham RI, Deacutis JM, Simpson SJ, Wilson K. 2015. Body condition constrains immune function in field populations of female Australian plague locust Chortoicetes terminifera. Parasite Immunol. 37, 233-241. (10.1111/pim.12179) PubMed DOI

Rohrich CR, Ngwa CJ, Wiesner J, Schmidtberg H, Degenkolb T, Kollewe C, Fischer R, Pradel G, Vilcinskas A. 2012. Harmonine, a defence compound from the harlequin ladybird, inhibits mycobacterial growth and demonstrates multi-stage antimalarial activity. Biol. Lett. 8, 308-311. (10.1098/rsbl.2011.0760) PubMed DOI PMC

Knapp M. 2014. Emergence of sexual size dimorphism and stage-specific effects of elevated temperature on growth rate and development rate in Harmonia axyridis. Physiol. Entomol. 39, 341-347. (10.1111/phen.12079) DOI

Teder T. 2014. Sexual size dimorphism requires a corresponding sex difference in development time: a meta-analysis in insects. Funct. Ecol. 28, 479-486. (10.1111/1365-2435.12172) DOI

Gegner T, Carrau T, Vilcinskas A, Lee KZ. 2018. The infection of Harmonia axyridis by a parasitic nematode is mediated by entomopathogenic bacteria and triggers sex-specific host immune responses. Sci. Rep. 8, 15938. (10.1038/s41598-018-34278-x) PubMed DOI PMC

Nunn CL, Lindenfors P, Pursall ER, Rolff J. 2009. On sexual dimorphism in immune function. Phil. Trans. R. Soc. B 364, 61-69. (10.1098/rstb.2008.0148) PubMed DOI PMC

Vincent CM, Gwynne DT. 2014. Sex-biased immunity is driven by relative differences in reproductive investment. Proc. R. Soc. B 281, 20140333. (10.1098/rspb.2014.0333) PubMed DOI PMC

Saito T, Bjornson S. 2008. Effects of a microsporidium from the convergent lady beetle, Hippodamia convergens Guerin-Meneville (Coleoptera: Coccinellidae), on three non-target coccinellids. J. Invertebr. Pathol. 99, 294-301. (10.1016/j.jip.2008.08.005) PubMed DOI

Řeřicha M, Dobeš P, Hyršl P, Knapp M. 2018. Ontogeny of protein concentration, haemocyte concentration and antimicrobial activity against Escherichia coli in haemolymph of the invasive harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae). Physiol. Entomol. 43, 51-59. (10.1111/phen.12224) DOI

Steele T, Singer RD, Bjornson S. 2020. Effects of food availability on microsporidiosis and alkaloid production in the two-spotted lady beetle, Adalia bipunctata L. J. Invertebr. Pathol. 175, 107443. (10.1016/j.jip.2020.107443) PubMed DOI

Vilcinskas A, Schmidtberg H, Estoup A, Tayeh A, Facon B, Vogel H. 2015. Evolutionary ecology of microsporidia associated with the invasive ladybird Harmonia axyridis. Insect Sci. 22, 313-324. (10.1111/1744-7917.12159) PubMed DOI

Zobrazit více v PubMed

Dryad
10.5061/dryad.jq2bvq8b6

figshare
10.6084/m9.figshare.c.5899275

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace