Integrative taxonomy reveals hidden species within a common fungal parasite of ladybirds
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30374135
PubMed Central
PMC6206035
DOI
10.1038/s41598-018-34319-5
PII: 10.1038/s41598-018-34319-5
Knihovny.cz E-zdroje
- MeSH
- analýza hlavních komponent MeSH
- Ascomycota klasifikace genetika izolace a purifikace fyziologie MeSH
- brouci parazitologie MeSH
- DNA fungální chemie genetika metabolismus MeSH
- fylogeneze MeSH
- mezerníky ribozomální DNA chemie genetika metabolismus MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
- mezerníky ribozomální DNA MeSH
Our understanding of fungal diversity is far from complete. Species descriptions generally focus on morphological features, but this approach may underestimate true diversity. Using the morphological species concept, Hesperomyces virescens (Ascomycota, Laboulbeniales) is a single species with global distribution and wide host range. Since its description 120 years ago, this fungal parasite has been reported from 30 species of ladybird hosts on all continents except Antarctica. These host usage patterns suggest that H. virescens could be made up of many different species, each adapted to individual host species. Using sequence data from three gene regions, we found evidence for distinct clades within Hesperomyces virescens, each clade corresponding to isolates from a single host species. We propose that these lineages represent separate species, driven by adaptation to different ladybird hosts. Our combined morphometric, molecular phylogenetic and ecological data provide support for a unified species concept and an integrative taxonomy approach.
Botanic Garden Meise Nieuwelaan 38 1860 Meise Belgium
Faculty of Science University of South Bohemia Branišovská 31 37005 České Budějovice Czech Republic
Zobrazit více v PubMed
Simpson, G. G. Principles of animal taxonomy (Columbia University Press, 1961). PubMed
de Queiroz, K. The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations in Endless forms. Species and speciation (eds Howard, D. J. & Berlocher, S. H.) 57–75 (Oxford University Press, 1998).
de Queiroz K. Species concepts and species delimitation. Syst. Biol. 2007;56:879–886. doi: 10.1080/10635150701701083. PubMed DOI
Blackwell M. The Fungi: 1, 2, 3 … 5.1 million species? Am. J. Bot. 2011;98:426–438. doi: 10.3732/ajb.1000298. PubMed DOI
Hibbett D, et al. Sequence-based classification and identification of Fungi. Mycologia. 2016;108:1049–1068. PubMed
Hawksworth DL. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol. Res. 1991;95:641–655. doi: 10.1016/S0953-7562(09)80810-1. DOI
O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 2005;71:5544–5550. doi: 10.1128/AEM.71.9.5544-5550.2005. PubMed DOI PMC
Taylor DL, et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine‐scale niche partitioning. Ecol. Monogr. 2014;84:3–20. doi: 10.1890/12-1693.1. DOI
Pringle A, et al. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution. 2005;59:1886–1899. doi: 10.1111/j.0014-3820.2005.tb01059.x. PubMed DOI
Singh G, et al. Coalescent-based species delimitation approach uncovers high cryptic diversity in the cosmopolitan lichen-forming fungal genus Protoparmelia (Lecanorales, Ascomycota) Plos One. 2015;10:e0124625. doi: 10.1371/journal.pone.0124625. PubMed DOI PMC
Lücking R, et al. A single microlichen constitutes hundreds of unrecognized species. Proc. Natl. Acad. Sci. 2014;111:11091–11096. doi: 10.1073/pnas.1403517111. PubMed DOI PMC
Schluter D. Ecology and the origin of species. Trends Ecol. Evol. 2001;16:372–380. doi: 10.1016/S0169-5347(01)02198-X. PubMed DOI
Schluter, D. The ecology of adaptive radiation (Oxford University Press, 2015).
Rundle HD, Nosil P. Ecological speciation. Ecol. Lett. 2005;8:336–352. doi: 10.1111/j.1461-0248.2004.00715.x. DOI
Dobzhansky T. Complete reproductive isolation between two morphologically similar species of Drosophila. Ecology. 1946;27:205–211. doi: 10.2307/1932895. DOI
den Bakker HC, Zuccarello GC, Kuyper TH, Noordeloos ME. Evolution and host specificity in the ectomycorrhizal genus Leccinum. New Phytol. 2004;163:201–215. doi: 10.1111/j.1469-8137.2004.01090.x. PubMed DOI
Araújo JPM, Evans HC, Geiser DM, Mackay WP, Hughes DP. Unravelling the diversity behind the Ophiocordyceps unilateralis (Ophiocordycipitaceae) complex: Three new species of zombie-ant fungi from the Brazilian Amazon. Phytotaxa. 2015;220:224–238. doi: 10.11646/phytotaxa.220.3.2. DOI
Weir A, Hammond PM. Laboulbeniales on beetles: host utilization patterns and species richness of the parasites. Biodivers. Conserv. 1997;6:701–719. doi: 10.1023/A:1018318320019. DOI
Weir, A. & Blackwell, M. Fungal biotrophic parasites of insects and other arthropods in Insect-fungal associations: Ecology and evolution (eds Vega, F. E. & Blackwell, M.) 119–145 (Oxford University Press, 2005).
Santamaria S, et al. First Laboulbeniales from harvestmen: the new genus. Opilionomyces. Phytotaxa. 2017;305:285–292. doi: 10.11646/phytotaxa.305.4.4. DOI
Haelewaters D, De Kesel A. De schimmel Hesperomyces virescens, een natuurlijke vijand van lieveheersbeestjes. Entomol. Ber. 2017;77:106–118.
Haelewaters D, et al. Parasites of Harmonia axyridis: current research and perspectives. BioControl. 2017;62:355–371. doi: 10.1007/s10526-016-9766-8. DOI
Cottrell TE, Riddick EW. Limited transmission of the ectoparasitic fungus Hesperomyces virescens between ladybirds. Psyche. 2012;2012:814378. doi: 10.1155/2012/814378. DOI
Majerus, M. E. N. Ladybirds. (Harper Collins, 1994).
Ireland H, Kearns PWE, Majerus MEN. Interspecific hybridisation in the coccinellids: some observations on an old controversy. Entomol. Rec. J. Var. 1986;98:181–185.
Majerus MEN. Interspecific hybridisation in the Coccinellidae. Entomol. Rec. J. Var. 1997;109:11–23.
Carstens BC, Pelletier TA, Reid NM, Satler JD. How to fail at species delimitation. Mol. Ecol. 2013;22:4369–4383. doi: 10.1111/mec.12413. PubMed DOI
Zhang J, Kapli P, Pavlidis P, Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics. 2013;29:2869–2876. doi: 10.1093/bioinformatics/btt499. PubMed DOI PMC
Leavitt SD, et al. Who’s getting around? Assessing species diversity and phylogeography in the widely distributed lichen-forming fungal genus Montanelia (Parmeliaceae, Ascomycota) Mol. Phylogenet. Evol. 2015;90:85–96. doi: 10.1016/j.ympev.2015.04.029. PubMed DOI
Kekkonen M, Hebert PD. DNA barcode‐based delineation of putative species: efficient start for taxonomic workflows. Mol. Ecol. Resour. 2014;14:706–715. doi: 10.1111/1755-0998.12233. PubMed DOI PMC
Dayrat B. Towards integrative taxonomy. Biol. J. Linn. Soc. 2005;85:407–415. doi: 10.1111/j.1095-8312.2005.00503.x. DOI
Zamora JC, Calonge FD, Martín MP. Integrative taxonomy reveals an unexpected diversity in Geastrum section Geastrum (Geastrales, Basidiomycota) Persoonia. 2015;34:130–165. doi: 10.3767/003158515X687443. PubMed DOI PMC
Padial JM, Miralles A, De la Riva I, Vences M. The integrative future of taxonomy. Frontiers Zool. 2010;7:16. doi: 10.1186/1742-9994-7-16. PubMed DOI PMC
Leavitt, S. D., Moreau, S. D. & Lumbsch, H. T. The dynamic discipline of species delimitation: progress toward effectively recognizing species boundaries in natural populations in Recent advances in lichenology (eds Upreti, D. K., Divakar, P. K., Shukla, V. & Bajapi, R.) 11–44 (Springer, 2015b).
Sousa JO, et al. More than one fungus in the pepper pot: Integrative taxonomy unmasks hidden species within Myriostoma coliforme (Geastraceae, Basidiomycota) Plos One. 2017;12:e0177873. doi: 10.1371/journal.pone.0177873. PubMed DOI PMC
Schoch CL, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. 2012;109:6241–6246. doi: 10.1073/pnas.1117018109. PubMed DOI PMC
Krüger M, Krüger C, Walker C, Stockinger H, Schüβler A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol. 2012;193:970–984. doi: 10.1111/j.1469-8137.2011.03962.x. PubMed DOI
Samson RA, et al. Phylogeny, identification and nomenclature of the genus. Aspergillus. Stud. Mycol. 2014;78:141–173. doi: 10.1016/j.simyco.2014.07.004. PubMed DOI PMC
Crous PW, Hawksworth DL, Wingfield MJ. Identifying and naming plant-pathogenic fungi: past, present, and future. Ann. Rev. Phytopathol. 2015;53:247–267. doi: 10.1146/annurev-phyto-080614-120245. PubMed DOI
Yahr R, Schoch CL, Dentinger BT. Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches. Phil. Trans. R. Soc. B. 2016;371:20150336. doi: 10.1098/rstb.2015.0336. PubMed DOI PMC
Liu F, et al. Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia. 2015;35:63–86. doi: 10.3767/003158515X687597. PubMed DOI PMC
Al-Hatmi AMS, et al. Evaluation of two novel barcodes for species recognition of opportunistic pathogens in Fusarium. Fungal Biol. 2016;120:231–245. doi: 10.1016/j.funbio.2015.08.006. PubMed DOI
Rosling A, et al. Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science. 2011;333:876–879. doi: 10.1126/science.1206958. PubMed DOI
Kovács GM, Jankovics T, Kiss L. Variation in the nrDNA ITS sequences of some powdery mildew species: do routine molecular identification procedures hide valuable information? Eur. J. Plant Pathol. 2011;131:135. doi: 10.1007/s10658-011-9793-3. DOI
Lindner DL, et al. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi. Ecol. Evol. 2013;3:1751–1764. doi: 10.1002/ece3.586. PubMed DOI PMC
den Bakker HC, Gravendeel B, Kuyper TW. An ITS phylogeny of Leccinum and an analysis of the evolution of minisatellite-like sequences within ITS1. Mycologia. 2004;96:102–118. doi: 10.1080/15572536.2005.11833001. PubMed DOI
Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH. Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. 2008;4:193–201. doi: 10.4137/EBO.S653. PubMed DOI PMC
Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacterial. 1990;172:4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990. PubMed DOI PMC
Miadlikowska J, Lutzoni F. Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. Int. J. Plant Sci. 2000;161:925–958. doi: 10.1086/317568. DOI
Bickford D, et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 2007;22:148–155. doi: 10.1016/j.tree.2006.11.004. PubMed DOI
Hawksworth DL. Fungal diversity and its implications for genetic resource collections. Stud. Mycol. 2004;50:9–18.
Grünig CR, Duo A, Sieber TN, Holdenrieder O. Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii s.l.-Acephala applanata species complex. Mycologia. 2008;100:47–67. doi: 10.1080/15572536.2008.11832498. PubMed DOI
Stefani FOP, Jones RH, May TW. Concordance of seven gene genealogies compared to phenotypic data reveals multiple cryptic species in Australian dermocyboid Cortinarius (Agaricales) Mol. Phylogenet. Evol. 2014;71:249–260. doi: 10.1016/j.ympev.2013.10.019. PubMed DOI
Olariaga I, Laskibar X, Holec J. Molecular data reveal cryptic speciation within Tricholomopsis rutilans: description of T. pteridicola sp. nov. associated with Pteridium aquilinum. Mycol. Progress. 2015;14:21. doi: 10.1007/s11557-015-1040-4. DOI
Hong SG, Jung HS. Phylogenetic analysis of Ganoderma based on nearly complete mitochondrial small-subunit ribosomal DNA sequences. Mycologia. 2004;96:742–755. doi: 10.1080/15572536.2005.11832922. PubMed DOI
Van de Putte K, Nuytinck J, De Crop E, Verbeken A. Lactifluus volemus inEurope: three species in one–revealed by a multilocus genealogical approach, Bayesian species delimitation and morphology. Fungal Biol. 2016;120:1–25. doi: 10.1016/j.funbio.2015.08.015. PubMed DOI
Adamcik S, et al. A molecular analysis reveals hidden species diversity within the current concept of Russula maculata (Russulaceae, Basidiomycota) Phytotaxa. 2016;270:71–88. doi: 10.11646/phytotaxa.270.2.1. DOI
Li Y-M, Shivas RG, Cai L. Cryptic diversity in Tranzscheliella spp.(Ustilaginales) is driven by host switches. Sci. Rep. 2017;7:43549. doi: 10.1038/srep43549. PubMed DOI PMC
Zelditsch, M. L., Swiderski, D. L. & Sheets H. D. Geometric morphometrics for biologists: a primer (Academic Press, 2012).
De Kesel A, den Neucker V. T. Morphological variation in Laboulbenia flagellata (Ascomycetes, Laboulbeniales) Belg. J. Bot. 2006;138:165–172.
De Kesel A, Haelewaters D. Laboulbenia slackensis and L. littoralis sp. nov. (Ascomycota, Laboulbeniales), two sibling species as a result of ecological speciation. Mycologia. 2014;106:407–414. doi: 10.3852/13-348. PubMed DOI
Goldmann L, Weir A, Rossi W. Molecular analysis reveals two new dimorphic species of Hesperomyces (Ascomycota, Laboulbeniomycetes) parasitic on the ladybird Coleomegilla maculata (Coleoptera, Coccinellidae) Fungal Biol. 2013;117:807–813. doi: 10.1016/j.funbio.2013.10.004. PubMed DOI
De Kesel A. Hesperomyces (Laboulbeniales) and coccinellid hosts. Sterbeeckia. 2011;30:32–37.
Thaxter R. Supplementary note on North American Laboulbeniaceae. Proc. Am. Acad. Arts Sci. 1891;25:261–270. doi: 10.2307/20020441. DOI
Maddison WP. Gene trees in species trees. Syst. Biol. 1997;46:523–536. doi: 10.1093/sysbio/46.3.523. DOI
Riddick EW, Cottrell TE. Is the prevalence and intensity of the ectoparasitic fungus Hesperomyces virescens related to the abundance of entomophagous coccinellids. Bull. Insectol. 2010;63:71–78.
Benjamin RK. Introduction and supplement to Roland Thaxter’s contribution towards a monograph of the Laboulbeniaceae. Bibl. Mycol. 1971;80:1–155.
Thaxter R. Contribution towards a monograph of the Laboulbeniaceae. Mem. Am. Acad. Arts Sci. 1896;12:187–429.
Santamaría SL., II Acompsomyces–Ilyomyces. Flora Mycol. Iberica. 2003;5:1–344.
Bates D, Maechler. M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Akaike H. New look at statistical-model identification. IEEE Trans. Autom. Control. 1974;19:716–723. doi: 10.1109/TAC.1974.1100705. DOI
Kassambara, A. factoextra: Visualization of the outputs of a multivariate analysis. R package version 1.0.1 https://cran.r-project.org/web/packages/factoextra/index.html (2015).
Haelewaters D, et al. Bringing Laboulbeniales to the 21st century: enhanced techniques for extraction and PCR amplification of DNA from minute ectoparasitic fungi. IMA Fungus. 2015;6:363–372. doi: 10.5598/imafungus.2015.06.02.08. PubMed DOI PMC
Haelewaters, D. Studies of the Laboulbeniomycetes: Diversity, evolution, and speciation. Ph.D. dissertation thesis, Harvard University (2018).
White, T. J., Bruns, T. D., Lee, S. B. & Taylor, J. W. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes in PCR Protocols: a guide to methods and applications (eds Innis, M. A., Gelfand, D. H., Sninsky, J. J., White, T. J.) 315–322 (Academic Press, 1990).
Landvik S, Egger KN, Schumacher T. Towards a subordinal classification of the Pezizales. Nord. J. Bot. 1997;17:403–418. doi: 10.1111/j.1756-1051.1997.tb00337.x. DOI
Gardes M, Bruns TD. ITS Primers with enhanced specificity for Basidiomycetes – application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993;2:113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x. PubMed DOI
Larena I, Salazar O, González V, Julián MC, Rubio V. Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. J. Biotechnol. 1999;75:187–194. doi: 10.1016/S0168-1656(99)00154-6. PubMed DOI
Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991;19:4008. doi: 10.1093/nar/19.14.4008. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proc. Gateway Comp. Environ. Workshop. 2010;14 Nov. 2010:1–8.
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Swofford, D. L. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1 (1991).
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 2016;65:997–1008. doi: 10.1093/sysbio/syw037. PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2017;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Stadler T. On incomplete sampling under birth–death models and connections to the sampling-based coalescent. J. Theor. Biol. 2009;261:58–66. doi: 10.1016/j.jtbi.2009.07.018. PubMed DOI
Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/ (2014).
Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 2012;21:1864–1877. doi: 10.1111/j.1365-294X.2011.05239.x. PubMed DOI
Pons J, et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 2006;55:595–609. doi: 10.1080/10635150600852011. PubMed DOI
Michonneau, F., Bolker, B., Holder, M., Lewis, P. & O’Meara, B. rncl: an interface to the nexus class library. R package version 0.6.0 http://CRAN.R-project.org/package = rncl (2015).
Ezard, T., Fujisawa, T. & Barraclough, T. G. splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-14/r31 http://R-Forge.R-project.org/projects/splits/ (2009).
Singleton-based species names and fungal rarity: Does the number really matter?
The haustorium as a driving force for speciation in thallus-forming Laboulbeniomycetes
Fungal Planet description sheets: 1284-1382
Notes on Trochila (Ascomycota, Leotiomycetes), with new species and combinations
Mortality of native and invasive ladybirds co-infected by ectoparasitic and entomopathogenic fungi
Fungal Systematics and Evolution: FUSE 5
Fifty Shades of the Harlequin Ladybird and a Sexually Transmitted Fungus