• This record comes from PubMed

Studies of Laboulbeniales on Myrmica ants (IV): host-related diversity and thallus distribution patterns of Rickia wasmannii

. 2019 ; 26 () : 29. [epub] 20190520

Language English Country France Media print-electronic

Document type Journal Article

Fungal species identities are often based on morphological features, but current molecular phylogenetic and other approaches almost always lead to the discovery of multiple species in single morpho-species. According to the morphological species concept, the ant-parasitic fungus Rickia wasmannii (Ascomycota, Laboulbeniales) is a single species with pan-European distribution and a wide host range. Since its description, it has been reported from ten species of Myrmica (Hymenoptera, Formicidae), of which two belong to the rubra-group and the other eight to the phylogenetically distinct scabrinodis-group. We found evidence for R. wasmannii being a single phylogenetic species using sequence data from two loci. Apparently, the original morphological description (dating back to 1899) represents a single phylogenetic species. Furthermore, the biology and host-parasite interactions of R. wasmannii are not likely to be affected by genetic divergence among different populations of the fungus, implying comparability among studies conducted on members of different ant populations. We found no differences in total thallus number on workers between Myrmica species, but we did observe differences in the pattern of thallus distribution over the body. The locus of infection is the frontal side of the head in Myrmica rubra and M. sabuleti whereas in M. scabrinodis the locus of infection differs between worker ants from Hungary (gaster tergites) and the Netherlands (frontal head). Possible explanations for these observations are differences among host species and among populations of the same species in (i) how ant workers come into contact with the fungus, (ii) grooming efficacy, and (iii) cuticle surface characteristics.

L’identification des espèces fongiques est souvent basée sur des caractéristiques morphologiques, mais les approches phylogénétiques moléculaires et autres conduisent presque toujours à la découverte d’espèces multiples dans une seule morpho-espèce. Selon le concept d’espèce morphologique, le champignon parasite de fourmis Rickia wasmannii (Ascomycota, Laboulbeniales) est une espèce unique ayant une répartition paneuropéenne et une large gamme d’hôtes. Depuis sa description, il a été signalé chez dix espèces de Myrmica (Hymenoptera, Formicidae), dont deux appartiennent au groupe rubra et les huit autres au groupe scabrinodis, phylogénétiquement distinct. Nous avons trouvé que R. wasmannii était une seule espèce phylogénétique en utilisant les données des séquences de deux loci. Apparemment, la description morphologique originale (datant de 1899) représente une seule espèce phylogénétique. De plus, la biologie et les interactions hôte-parasite de R. wasmannii ne devraient pas être affectées par une divergence génétique entre différentes populations du champignon, ce qui implique une comparabilité entre les études conduites sur des membres de différentes populations de fourmis. Nous n’avons trouvé aucune différence dans le nombre total de thalles chez les ouvrières entre les espèces de Myrmica, mais nous avons observé des différences dans le schéma de distribution des thalles sur le corps. Le locus d’infection est le front de la tête chez Myrmica rubra et M. sabuleti, alors que chez M. scabrinodis, le lieu d’infection diffère entre les ouvrières de Hongrie (tergites abdominaux) et des Pays-Bas (front de la tête). Les explications possibles de ces observations sont les différences entre les espèces hôtes et entre les populations de la même espèce en ce qui concerne (i) le contact des ouvrières avec le champignon, (ii) l’efficacité du toilettage et (iii) les caractéristiques de la surface de la cuticule.

See more in PubMed

Ballinger MJ, Moore LD, Perlman SJ. 2018. Evolution and diversity of inherited Spiroplasma symbionts in Myrmica ants. Applied and Environmental Microbiology, 84, e02299–17. PubMed PMC

Báthori F, Csata E, Tartally A. 2015. Rickia wasmannii increases the need for water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). Journal of Invertebrate Pathology, 126, 78–82. PubMed

Báthori F, Pfliegler WP, Radai Z, Tartally A. 2018. Host age determines parasite load of Laboulbeniales fungi infecting ants: implications for host-parasite relationship and fungal life history. Mycoscience, 59, 166–171.

Báthori F, Pfliegler WP, Zimmerman C-U, Tartally A. 2017. Online image databases as multi-purpose resources: discovery of a new host ant of Rickia wasmannii Cavara (Ascomycota, Laboulbeniales) by screening AntWeb.org. Journal of Hymenoptera Research, 61, 85–94.

Báthori F, Rádai Z, Tartally A. 2017. The effect of Rickia wasmannii (Ascomycota, Laboulbeniales) on the aggression and boldness of Myrmica scabrinodis (Hymenoptera, Formicidae). Journal of Hymenoptera Research, 58, 41–52.

Benjamin RK. 1971. Introduction and supplement to Roland Thaxter’s contribution towards a monograph of the Laboulbeniaceae. Bibliotheca Mycologica, 30, 1–155.

Cammaerts M-C, Cammaerts R. 1980. Food recruitment strategies of the ants Myrmica sabuleti and Myrmica ruginodis. Behavioural Processes, 5, 251–270. PubMed

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972–1973. PubMed PMC

Cavara F. 1899. Di una nuova Laboulbeniacea: Rickia wasmannii, nov. gen. et nov. spec. Malpighia, 13, 173–188.

Chernomor O, von Haeseler A, Minh BQ. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65, 997–1008. PubMed PMC

Csata E, Bernadou A, Rákosy-Tican E, Heinze J, Markó B. 2017. The effects of fungal infection and physiological condition on the locomotory behaviour of the ant Myrmica scabrinodis. Journal of Insect Physiology, 98, 167–172. PubMed

Csata E, Erős K, Markó B. 2014. Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: changes in host mortality and behavior. Insectes Sociaux, 61, 247–252.

Csata E, Timuş N, Witek M, Casacci LP, Lucas C, Bagnères AG, Sztencel-Jabłonka A, Barbero F, Bonelli S, Rákosy L, Markó B. 2017. Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Scientific Reports, 7, 46323. PubMed PMC

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. PubMed PMC

De Kesel A, Haelewaters D, Dekoninck W. 2016. Myrmecophilous Laboulbeniales (Ascomycota) in Belgium. Sterbeeckia, 34, 3–6.

Dinno A. 2017. conover.test: Conover-Iman test of multiple comparisons using rank sums. R package version 1.1.5. Accessed January 25, 2019. https://CRAN.R-project.org/package=conover.test

Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973. PubMed PMC

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. PubMed PMC

Egger KN. 1995. Molecular analysis of ectomycorrhizal fungal communities. Canadian Journal of Botany, 73, S1415–S1422.

Elmes G, Akino T, Thomas J, Clarke R, Knapp J. 2002. Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies. Oecologia, 130, 525–535. PubMed

Elmes GW, Thomas JA, Wardlaw JC, Hochberg ME, Clarke RT, Simcox DJ. 1998. The ecology of Myrmica ants in relation to the conservation of Maculinea butterflies. Journal of Insect Conservation, 2, 67–78.

Enghoff H, Santamaria S. 2015. Infectious intimacy and contaminated caves – three new species of ectoparasitic fungi (Ascomycota: Laboulbeniales) from blaniulid millipedes (Diplopoda: Julida) and inferences about their transmittal mechanisms. Organisms Diversity & Evolution, 15, 249–263.

Espadaler X, Lebas C, Wagenknecht J, Tragust S. 2011. Laboulbenia formicarum (Ascomycota, Laboulbeniales), an exotic parasitic fungus, on an exotic ant in France. Vie & Milieu, 61, 41–44.

Espadaler X, Santamaria S. 2003. Laboulbenia formicarum Thaxt. (Ascomycota, Laboulbeniales) crosses the Atlantic. Orsis, 18, 97–101.

Ezard T, Fujisawa T, Barraclough TG. 2009. splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-14/r31. Accessed January 23, 2019. http://RForge.R-project.org/projects/splits/.

Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for Basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118. PubMed

Goldmann L, Weir A, Rossi W. 2013. Molecular analysis reveals two new dimorphic species of Hesperomyces (Ascomycota, Laboulbeniomycetes) parasitic on the ladybird Coleomegilla maculata (Coleoptera, Coccinellidae). Fungal Biology, 117, 807–813. PubMed

Gómez K, Espadaler X, Santamaria S. 2016. Ant-fungus interactions: Laboulbenia camponoti Batra in Italy and a new host for L. formicarum Thaxter (Fungi: Ascomycota, Laboulbeniales). Sociobiology, 63, 950–955.

Haelewaters D, Boer P, Noordijk J. 2015. Studies of Laboulbeniales (Fungi, Ascomycota) on Myrmica ants: Rickia wasmannii in the Netherlands. Journal of Hymenoptera Research, 47, 39–47.

Haelewaters D, De Kesel A, Pfister DH. 2018. Integrative taxonomy reveals hidden species within a common fungal parasite of ladybirds. Scientific Reports, 8, 15966. PubMed PMC

Haelewaters D, Gorczak M, Pfliegler WP, Tartally A, Tischer M, Wrzosek M, Pfister DH. 2015. Bringing the Laboulbeniales to the 21st century: enhanced techniques for extraction and PCR amplification of DNA from minute ectoparasitic fungi. IMA Fungus, 6, 363–372. PubMed PMC

Haelewaters D, Gort G, Boer P, Noordijk J. 2015. Studies of Laboulbeniales (Fungi, Ascomycota) on Myrmica ants (II): variation of infection by Rickia wasmannii over habitats and time. Animal Biology, 65, 219–231.

Haelewaters D, Page RA, Pfister DH. 2018. Laboulbeniales hyperparasites (Fungi, Ascomycota) of bat flies: independent origins and host associations. Ecology and Evolution, 8, 8396–8418. PubMed PMC

Haelewaters D, Pfister DH. 2019. Morphological species of Gloeandromyces (Ascomycota, Laboulbeniales) evaluated using single-locus species delimitation methods. Fungal Systematics and Evolution, 3, 19–33. PubMed PMC

Haelewaters D, Pfliegler WP, Gorczak M, Pfister DH. 2019. Birth of an order: comprehensive molecular phylogenetic study excludes Herpomyces (Fungi, Laboulbeniomycetes) from Laboulbeniales. Molecular Phylogenetics and Evolution, 133, 286–301. PubMed

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2017. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522. PubMed PMC

Hopple JS Jr, Vilgalys R. 1994. Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia, 86, 96–107.

Jansen G, Savolainen R, Vepsäläinen K. 2010. Phylogeny, divergence-time estimation, biogeography and social parasite-host relationships of the Holarctic ant genus Myrmica (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 56, 294–304. PubMed

Jukes TH, Cantor CR. 1969. Evolution of protein molecules, in Mammalian protein metabolism, Munro NH, Editor. Academic Press: New York: p. 21–132.

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. PubMed

Krijthe JH. 2015. Rtsne: T-distributed stochastic neighbor embedding using Barnes-Hut implementation. R package version 0.13. Accessed January 25, 2019. https://github.com/jkrijthe/Rtsne.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. PubMed PMC

Kurtzman CP, Robnett CJ. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek, 73, 331–371. PubMed

Lenth RV. 2016. Least-squares means: the R package lsmeans. Journal of Statistical Software, 69, 1–33.

Leppänen J, Vepsäläinen K, Savolainen R. 2011. Phylogeography of the ant Myrmica rubra and its inquiline social parasite. Ecology and Evolution, 1, 46–62. PubMed PMC

Long JA. 2018. jtools: analysis and presentation of social scientific data. R package version 1.1.1. Accessed January 25, 2019. https://cran.r-project.org/package=jtools.

Markó B, Csata E, Erős K, Német E, Czekes Z, Rózsa L. 2016. Distribution of the myrmecoparasitic fungus Rickia wasmannii (Ascomycota: Laboulbeniales) across colonies, individuals, and body parts of Myrmica scabrinodis. Journal of Invertebrate Pathology, 136, 74–80. PubMed

Michonneau F, Bolker B, Holder M, Lewis P, OMeara B. 2018. rncl: an interface to the nexus class library. R package version 0.8.3. Accessed January 25, 2019. http://CRAN.R-project.org/package=rncl.

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the gateway computing environments workshop (GCE), 14 Nov. 2010, New Orleans, Louisiana p. 1–8.

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. PubMed PMC

Pech P, Heneberg P. 2015. Benomyl treatment decreases fecundity of ant queens. Journal of Invertebrate Pathology, 130, 61–63. PubMed

Pfliegler WP, Báthori F, Haelewaters D, Tartally A. 2016. Studies of Laboulbeniales on Myrmica ants (III): myrmecophilous arthropods as alternative hosts of Rickia wasmannii. Parasite, 23, 50. PubMed PMC

Pons J, Barraclough T, Gomez-Zurita J, Cardoso A, Duran D, Hazell S, Kamoun S, Sumlin W, Vogler A. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55, 595–609. PubMed

Puillandre N, Lambert A, Brouillet S, Achaz G. 2012. ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877. PubMed

Radchenko AG, Elmes GW. 2010. Myrmica ants (Hymenoptera: Formicidae) of the old world. Warsaw, Poland: Natura optima dux.

Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014. Tracer v1.6. Accessed December 12, 2018. http://tree.bio.ed.ac.uk/software/tracer/.

Reboleira ASPS, Enghoff H, Santamaria S. 2018. Novelty upon novelty visualized by rotational scanning electron micrographs (rSEM): Laboulbeniales on the millipede order Chordeumatida. Plos One, 13, e0206900. PubMed PMC

Santamaria S, Enghoff H, Reboleira ASPS. 2014. Laboulbeniales on millipedes: the genera Diplopodomyces and Troglomyces. Mycologia, 106, 1027–1038. PubMed

Santamaria S, Enghoff H, Reboleira ASPS. 2016. Hidden biodiversity revealed by collections-based research – Laboulbeniales in millipedes: genus Rickia. Phytotaxa, 243, 101–127.

Santamaria S, Enghoff H, Reboleira ASPS. 2018. New species of Troglomyces and Diplopodomyces (Laboulbeniales, Ascomycota) from millipedes (Diplopoda). European Journal of Taxonomy, 429, 1–20.

Scheloske H-W. 1969. Beiträge zur Biologie, Ökologie und Systematik der Laboulbeniales (Ascomycetes) unter besondere Berücksichtigung des Parasit-Wirt-Verhältnisses. Parasitologische Schriftenreihe, 19, 1–176.

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109, 6241–6246. PubMed PMC

Seifert B. 1988. A taxonomic revision of the Myrmica species of Europe, Asia Minor and Caucasia (Hymenoptera, Formicidae). Abhandlungen und Berichte des Naturkundemuseums Görlitz, 62, 1–75.

Seifert B. 2018. The ants of Central and North Europe. Tauer, Germany: lutra Verlags- und Vertriebsgesellschaft.

Stadler T. 2009. On incomplete sampling under birth-death models and connections to the sampling-based coalescent. Journal of Theoretical Biology, 261, 58–66. PubMed

Sundberg H. 2018. Contributions to the understanding of diversity and evolution in the genus Coreomyces. Ph.D. dissertation Sweden: Uppsala University.

Sundberg H, Kruys Å, Bergsten J, Ekman S. 2018. Position specificity in the genus Coreomyces (Laboulbeniomycetes, Ascomycota). Fungal Systematics and Evolution, 1, 217–228. PubMed PMC

Swofford DL. 1991. PAUP: phylogenetic analysis using parsimony, version 3.1. Champaign, Illinois: Computer program distributed by the Illinois Natural History Survey.

Thaxter R. 1908. Contribution toward a monograph of the Laboulbeniaceae. Part II. Memoirs of the American Academy of Arts and Sciences, 13, 217–469. Plates XXVIII-LXXI.

Tragust S, Tartally A, Espadaler X, Billen J. 2016. Histopathology of Laboulbeniales (Ascomycota: Laboulbeniales): ectoparasitic fungi on ants (Hymenoptera: Formicidae). Myrmecological News, 23, 81–89.

van der Maaten L. 2014. Accelerating t-SNE using tree-based algorithms. Journal of Machine Learning Research, 15, 3221–3245.

van der Maaten L, Hinton G. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.

Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172, 4238–4246. PubMed PMC

Walker MJ, Dorrestein A, Camacho JJ, Meckler LA, Silas KA, Hiller T, Haelewaters D. 2018. A tripartite survey of hyperparasitic fungi associated with ectoparasitic flies on bats (Mammalia: Chiroptera) in a neotropical cloud forest in Panama. Parasite, 25, 19. PubMed PMC

Weir A, Hughes M. 2002. The taxonomic status of Corethromyces bicolor from New Zealand, as inferred from morphological, developmental, and molecular studies. Mycologia, 94, 483–493. PubMed

White TJ, Bruns TD, Lee SB, Taylor JW. 1990. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes, in PCR protocols: a guide to methods and applications, Innis MA, Gelfand DH, Sninsky JJ, White TJ, Editors. Academic Press: New York: p. 315–322.

Witek M, Casacci LP, Barbero F, Patricelli D, Sala M, Bossi S, Maffei M, Woyciechowski M, Balletto E, Bonelli S. 2013. Interspecific relationships in co-occurring populations of social parasites and their host ants. Biological Journal of the Linnean Society, 109, 699–709.

Zhang J, Kapli P, Pavlidis P, Stamatakis A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. PubMed PMC

Newest 20 citations...

See more in
Medvik | PubMed

The haustorium as a driving force for speciation in thallus-forming Laboulbeniomycetes

. 2022 Jan 31 ; 13 (1) : 1. [epub] 20220131

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...