Relative Importance of Sex, Pre-Starvation Body Mass and Structural Body Size in the Determination of Exceptional Starvation Resistance of Anchomenus dorsalis (Coleoptera: Carabidae)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26978071
PubMed Central
PMC4792388
DOI
10.1371/journal.pone.0151459
PII: PONE-D-15-51380
Knihovny.cz E-zdroje
- MeSH
- brouci chemie fyziologie MeSH
- dlouhověkost MeSH
- fyziologická adaptace MeSH
- hladovění MeSH
- lipidy analýza MeSH
- náhodné rozdělení MeSH
- pohlavní dimorfismus MeSH
- predátorské chování MeSH
- tělesná hmotnost MeSH
- velikost těla MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidy MeSH
In nature, almost all animals have to cope with periods of food shortage during their lifetimes. Starvation risks are especially high for carnivorous predatory species, which often experience long intervals between stochastic prey capturing events. A laboratory experiment using the common predatory carabid beetle Anchomenus dorsalis revealed an exceptional level of starvation resistance in this species: males survived up to 137 days and females up to 218 days without food at 20°C. Individual starvation resistance was strongly positively affected by pre-starvation body mass but only slightly by beetle structural body size per se. Females outperformed males even when the effect of gender was corrected for the effects of structural body size and pre-starvation body mass. The better performance of females compared to males and of beetles with higher relative pre-starvation body mass could be linked to higher fat content and lean dry mass before starvation, followed by a greater decrease in both during starvation. There was also a difference between the sexes in the extent of body mass changes both during ad libitum feeding and following starvation; the body masses of females fluctuated more compared to males. This study stresses the need to distinguish between body mass and structural body size when investigating the ecological and evolutionary consequences of body size. Investigation of the net effects of body size and sex is necessary to disentangle the causes of differences in individual performances in studies of species with significant sexual size dimorphism.
Zobrazit více v PubMed
McCue MD. Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 2010; 156: 1–18. PubMed
Wang T, Hung CCY, Randall DJ (2006) The comparative physiology of food deprivation: From feast to famine. Annual Review of Physiology. pp. 223–251. PubMed
Lovei GL, Sunderland KD. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology 1996; 41: 231–256. PubMed
Hering D, Plachter H. Riparian ground beetles (Coeloptera, Carabidae) preying on aquatic invertebrates: A feeding strategy in alpine floodplains. Oecologia 1997; 111: 261–270. PubMed
Bilde T, Toft S. PREY PREFERENCE AND EGG-PRODUCTION OF THE CARABID BEETLE AGONUM-DORSALE. Entomologia Experimentalis Et Applicata 1994; 73: 151–156.
Lang A. Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. Oecologia 2003; 134: 144–153. PubMed
McKemey AR, Symondson WOC, Glen DM. Predation and prey size choice by the carabid beetle Pterostichus melanarius (Coleoptera: Carabidae): the dangers of extrapolating from laboratory to field. Bulletin of Entomological Research 2003; 93: 227–234. PubMed
Chaabane K, Loreau M, Josens G. Individual and population energy budgets of Abax ater (Coleoptera, Carabidae). Annales Zoologici Fennici 1996; 33: 97–108.
Laparie M, Larvor V, Frenot Y, Renault D. Starvation resistance and effects of diet on energy reserves in a predatory ground beetle (Merizodus soledadinus; Carabidae) invading the Kerguelen Islands. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 2012; 161: 122–129. PubMed
Bilde T, Toft S. Quantifying food limitation of arthropod predators in the field. Oecologia 1998; 115: 54–58. PubMed
Bommarco R. Stage sensitivity to food limitation for a generalist arthropod predator, Pterostichus cupreus (Coleoptera: Carabidae). Environmental Entomology 1998; 27: 863–869.
Knapp M, Uhnava K. Body Size and Nutrition Intake Effects on Fecundity and Overwintering Success in Anchomenus dorsalis (Coleoptera: Carabidae). Journal of Insect Science 2014; 14. PubMed PMC
Stahlschmidt ZR, Rollinson N, Acker M, Adamo SA. Are all eggs created equal? Food availability and the fitness trade-off between reproduction and immunity. Functional Ecology 2013; 27: 800–806.
Aggarwal DD. Physiological basis of starvation resistance in Drosophila leontia: analysis of sexual dimorphism. Journal of Experimental Biology 2014; 217: 1849–1859. 10.1242/jeb.096792 PubMed DOI
Goenaga J, Jose Fanara J, Hasson E. Latitudinal Variation in Starvation Resistance is Explained by Lipid Content in Natural Populations of Drosophila melanogaster. Evolutionary Biology 2013; 40: 601–612.
Hoffmann AA, Harshman LG. Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population and intrapopulation levels. Heredity 1999; 83: 637–643. PubMed
Pijpe J, Brakefield PM, Zwaan BJ. Phenotypic plasticity of starvation resistance in the butterfly Bicyclus anynana. Evolutionary Ecology 2007; 21: 589–600.
Gergs A, Jager T. Body size-mediated starvation resistance in an insect predator. Journal of Animal Ecology 2014; 83: 758–768. 10.1111/1365-2656.12195 PubMed DOI
Reim C, Teuschl Y, Blanckenhorn WU. Size-dependent effects of temperature and food stress on energy reserves and starvation resistance in yellow dung flies. Evolutionary Ecology Research 2006; 8: 1215–1234.
van Uitregt VO, Hurst TP, Wilson RS. Reduced size and starvation resistance in adult mosquitoes, Aedes notoscriptus, exposed to predation cues as larvae. Journal of Animal Ecology 2012; 81: 108–115. 10.1111/j.1365-2656.2011.01880.x PubMed DOI
Krasnov BR, Khokhlova IS, Fielden LJ, Burdelova NI. Time of survival under starvation in two flea species (Siphonaptera: Pulicidae) at different air temperatures and relative humidities. Journal of Vector Ecology 2002; 27: 70–81. PubMed
Blanckenhorn WU, Fanti J, Reim C. Size-dependent energy reserves, energy utilization and longevity in the yellow dung fly. Physiological Entomology 2007; 32: 372–381.
Tejeda MT, Arredondo J, Perez-Staples D, Ramos-Morales P, Liedo P, Díaz-Fleischer F. Effects of size, sex and teneral resources on the resistance to hydric stress in the tephritid fruit fly Anastrepha ludens. Journal of Insect Physiology 2014; 70: 73–80. 10.1016/j.jinsphys.2014.08.011 PubMed DOI
Resh VH, Carde RT. Encyclopedia of Insects, Second Edition Academic Press; 2009.
Teder T. Sexual size dimorphism requires a corresponding sex difference in development time: a meta-analysis in insects. Functional Ecology 2014; 28: 479–486.
Chen H, Li Z, Bu SH, Tian ZQ. Flight of the Chinese white pine beetle (Coleoptera: Scolytidae) in relation to sex, body weight and energy reserve. Bulletin of Entomological Research 2011; 101: 53–62. 10.1017/S0007485310000209 PubMed DOI
Lease HM, Wolf BO. Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiological Entomology 2011; 36: 29–38.
Stern DL, Emlen DJ. The developmental basis for allometry in insects. Development 1999; 126: 1091–1101. PubMed
Lee KP, Jang T. Exploring the nutritional basis of starvation resistance in Drosophila melanogaster. Functional Ecology 2014; 28: 1144–1155.
Osawa N. The effect of prey availability on ovarian development and oosorption in the ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology 2005; 102: 503–511.
Hůrka K. Carabidae of the Czech and Slovak Republics Carabidae České a Slovenské republiky. Kabourek; 1996.
Baranovska E, Knapp M, Saska P. The effects of overwintering, sex, year, field identity and vegetation at the boundary of fields on the body condition of Anchomenus dorsalis (Coleoptera: Carabidae). European Journal of Entomology 2014; 111: 608–614.
Baranovska E, Knapp M. Small-scale spatiotemporal variability in body size of two common carabid beetles. Central European Journal of Biology 2014; 9: 476–494.
Knapp M. Preservative fluid and storage conditions alter body mass estimation in a terrestrial insect. Entomologia Experimentalis Et Applicata 2012; 143: 185–190.
Nedved O, Windsor D. SUPERCOOLING ABILITY, FAT AND WATER CONTENTS IN A DIAPAUSING TROPICAL BEETLE, STENOTARSUS-ROTUNDUS (COLEOPTERA, ENDOMYCHIDAE). European Journal of Entomology 1994; 91: 307–312.
Ostman O. Asynchronous temporal variation among sites in condition of two carabid species. Ecological Entomology 2005; 30: 63–69.
Knapp M, Knappova J. Measurement of body condition in a common carabid beetle, Poecilus cupreus: a comparison of fresh weight, dry weight, and fat content. Journal of Insect Science 2013; 13. PubMed PMC
Smilauer P, Leps J. Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press; 2014.
R Development Core Team. A language and environment for statistical computing. Available at http://www.R-project.org; 2014.
Borcard D, Legendre P, Drapeau P. PARTIALLING OUT THE SPATIAL COMPONENT OF ECOLOGICAL VARIATION. Ecology 1992; 73: 1045–1055.
Crawley M. The R Book. John Wiley & Sons, Ltd; 2012.
McCue MD. Comparative Physiology of Fasting, Starvation, and Food Limitation. Springer; 2012.
Young OP. Body weight and survival of Calosoma sayi (Coleoptera: Carabidae) during laboratory feeding regimes. Annals of the Entomological Society of America 2008; 101: 104–112.
Saastamoinen M, Ikonen S, Hanski I. Significant effects of Pgi genotype and body reserves on lifespan in the Glanville fritillary butterfly. Proceedings of the Royal Society B-Biological Sciences 2009; 276: 1313–1322. PubMed PMC
Rion S, Kawecki TJ. Evolutionary biology of starvation resistance: what we have learned from Drosophila. Journal of Evolutionary Biology 2007; 20: 1655–1664. PubMed
Lease HM, Wolf BO. Exoskeletal Chitin Scales Isometrically With Body Size in Terrestrial Insects. Journal of Morphology 2010; 271: 759–768. 10.1002/jmor.10835 PubMed DOI