Gender and timing during ontogeny matter: effects of a temporary high temperature on survival, body size and colouration in Harmonia axyridis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24086415
PubMed Central
PMC3783448
DOI
10.1371/journal.pone.0074984
PII: PONE-D-13-23112
Knihovny.cz E-zdroje
- MeSH
- analýza přežití MeSH
- brouci anatomie a histologie růst a vývoj fyziologie MeSH
- časové faktory MeSH
- fenotyp MeSH
- melaniny metabolismus MeSH
- pigmentace fyziologie MeSH
- pohlavní dimorfismus * MeSH
- teplota * MeSH
- velikost těla * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- melaniny MeSH
The ambient temperature experienced during development is a crucial factor affecting survival and adult phenotype in ectotherms. Moreover, the exact response of individuals to different temperature regimes is frequently sex-specific. This sex-specific response can result in varying levels of sexual dimorphism according to the experienced conditions. The majority of studies have investigated the effects of temperature on individuals reared under a constant temperature regime throughout their whole preimaginal development, whereas information on stage-dependent variation in temperature effects is scarce. Here we investigate how the stage at which elevated temperature is experienced influences survival, adult body size and colouration in the harlequin ladybird Harmonia axyridis form succinea. The effects of timing of exposure to elevated temperature on the adult phenotype are assessed separately for males and females. Control individuals were reared at a constant temperature of 20 °C. Beetles in other treatments were additionally exposed to 33 °C for 48 hours during the following developmental stages: egg, 1(st) to 2(nd) larval instar, 3(rd) larval instar, 4(th) larval instar and pupa. Exposure to an elevated temperature during the early developmental stages resulted in lower survival, but the adult phenotype of survivors was almost unaffected. Exposure to an elevated temperature during the later developmental stages (4(th) larval instar or pupa) resulted in the decreased melanisation of elytra, decreased structural body size and increased dry mass. Furthermore, the timing of high temperature exposure affected the degree of sexual dimorphism in elytral melanisation and dry mass. We demonstrate that the effects of elevated temperature can vary according to the developmental stage at exposure. Detailed information on how ambient temperature affects the developmental biology of ectotherms is crucial for modeling population growth and predicting the spread of invasive species such as Harmonia axyridis.
Zobrazit více v PubMed
Stearns SC (1977) Evolution of life-history traits - critique of theory and a review of data. Ann Rev Ecol Syst 8: 145–171.
Nylin S, Gotthard K (1998) Plasticity in life history traits. Ann Rev Entomol 43: 63–83. PubMed
Honěk A (1993) Intraspecific variation in body size and fecundity in insects - a general relationship. Oikos 66: 483–492.
Atkinson D (1994) Temperature and organism size - a biological law for ectotherms. Adv Ecol Res 25: 1–58.
Angilletta MJ, Dunham AE (2003) The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am Nat 162: 332–342. PubMed
Forster J, Hirst AG (2012) The temperature-size rule emerges from ontogenetic differences between growth and development rates. Funct Ecol 26: 483–492.
van der Have TM, de Jong G (1996) Adult size in ectotherms: Temperature effects on growth and differentiation. J Theor Biol 183: 329–340.
Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evol Ecol Res 10: 251–268.
Michie LJ, Mallard F, Majerus MEN, Jiggins FM (2010) Melanic through nature or nurture: genetic polymorphism and phenotypic plasticity in Harmonia axyridis. J Evol Biol 23: 1699–1707. PubMed
Kooi RE, Brakefield PM (1999) The critical period for wing pattern induction in the polyphenic tropical butterfly Bicyclus anynana (Satyrinae). J Insect Physiol 45: 201–212. PubMed
Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4: 131–135. PubMed
Clusella-Trullas S, van Wyk JH, Spotila JR (2007) Thermal melanism in ectotherms. J Therm Biol 32: 235–245.
Michie LJ, Masson A, Ware RL, Jiggins FM (2011) Seasonal phenotypic plasticity: wild ladybirds are darker at cold temperatures. Evol Ecol 25: 1259–1268.
Reed TE, Waples RS, Schindler DE, Hard JJ, Kinnison MT (2010) Phenotypic plasticity and population viability: the importance of environmental predictability. Proc R Soc B Biol Sci 277: 3391–3400. PubMed PMC
Vigneron JP, Pasteels JM, Windsor DM, Vertesy Z, Rassart M, et al. (2007) Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae). Phys Rev E Stat Nonlin Soft Matter Phys 76: 031907. PubMed
Ricalde MP, Nava DE, Loeck AE, Donatti MG (2012) Temperature-dependent development and survival of Brazilian populations of the Mediterranean fruit fly, Ceratitis capitata, from tropical, subtropical and temperate regions. J Insect Sci 12: 33. PubMed PMC
Amarasekare P, Sifuentes R (2012) Elucidating the temperature response of survivorship in insects. Funct Ecol 26: 959–968.
Duyck PF, Quilici S (2002) Survival and development of different life stages of three Ceratitis spp. (Diptera: Tephritidae) reared at five constant temperatures. Bull Entomol Res 92: 461–469. PubMed
Pappas ML, Broufas GD, Koufali N, Pieri P, Koveos DS (2011) Effect of heat stress on survival and reproduction of the olive fruit fly Bactocera (Dacus) oleae. J Appl Entomol 135: 359–366.
Boina D, Subramanyam B (2004) Relative susceptibility of Tribolium confusum life stages exposed to elevated temperatures. J Econ Entomol 97: 2168–2173. PubMed
Abdelghany AY, Awadalla SS, Abdel-Baky NF, El-Syrafi HA, Fields PG (2010) Effect of high and low temperatures on the drugstore beetle (Coleoptera: Anobiidae). J Econ Entomol 103: 1909–1914. PubMed
Acar EB, Mill DD, Smith BN, Hansen LD, Booth GM (2004) Calorespirometric determination of the effects of temperature on metabolism of Harmonia axyridis (Col: Coccinellidae) from second instars to adults. Environ Entomol 33: 832–838.
Lamana ML, Miller JC (1998) Temperature-dependent development in an Oregon population of Harmonia axyridis (Coleoptera: Coccinellidae). Environ Entomol 27: 1001–1005.
Fairbairn DJ, Blanckenhorn WU, Székely T (2007) Sex, size and gender roles. Evolutionary studies of sexual size dimorphism. New York: Oxford University Press. 266 p.
Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev 85: 139–169. PubMed
Fairbairn DJ (2005) Allometry for sexual size dimorphism: Testing two hypotheses for Rensch’s rule in the water strider Aquarius remigis. Am Nat 166: S69–S84. PubMed
Stillwell RC, Blanckenhorn WU, Teder T, Davidowitz G, Fox CW (2010) Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Ann Rev Entomol 55: 227–245. PubMed PMC
Stillwell RC, Davidowitz G (2010) Sex differences in phenotypic plasticity of a mechanism that controls body size: implications for sexual size dimorphism. Proc R Soc B Biol Sci 277: 3819–3826. PubMed PMC
Tammaru T, Esperk T, Ivanov V, Teder T (2010) Proximate sources of sexual size dimorphism in insects: locating constraints on larval growth schedules. Evol Ecol 24: 161–175.
Budriené A, Budrys E, Nevronyté Ž (2013) Sexual size dimorphism in the ontogeny of the solitary predatory wasp Symmorphus allobrogus (Hymenoptera: Vespidae). C R Biol 336: 57–64. PubMed
Katz RW, Brown BG (1992) Extreme events in a changing climate - variability is more important than averages. Clim Change 21: 289–302.
Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, et al. (2000) Observed variability and trends in extreme climate events: A brief review. Bull Am Meteorol Soc 81: 417–425.
Trenberth KE, Fasullo JT (2012) Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J Geophysic Res Atmos 117: D17103.
Brown PMJ, Thomas CE, Lombaert E, Jeffries DL, Estoup A, et al. (2011) The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. Biocontrol 56: 623–641.
Lombaert E, Guillemaud T, Cornuet JM, Malausa T, Facon B, et al. (2010) Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLOS ONE 5: e9743. PubMed PMC
Nedvěd O, Háva J, Kulíková D (2011) Record of the invasive alien ladybird Harmonia axyridis (Coleoptera, Coccinellidae) from Kenya. Zookeys 106: 77–81. PubMed PMC
Nedvědová T, Awad M, Ungerová D, Nedvěd O (2013) Characteristics of ladybird Harmonia axyridis during autumn migration. IOBC Bull. In press.
Hukushima S, Kamei M (1970) Effects of various species of aphids as food on development, fecundity and longevity of Harmonia axyridis Pallas (Coleoptera: Coccinellidae). Res Bull Faculty Agric Gifu Univ 29: 53–66.
Awad M, Kalushkov P, Nedvědová T, Nedvěd O (2013) Fecundity and fertility of ladybird beetle Harmonia axyridis after prolonged cold storage. BioControl. In press.
Berkvens N, Bonte J, Berkvens D, Deforce K, Tirry L, et al. (2008) Pollen as an alternative food for Harmonia axyridis. BioControl 53: 201–210.
Acar EB, Mill DD, Smith BN, Hansen LD, Booth GM (2005) Comparison of respiration in adult Harmonia axyridis Pallas and Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae). Environ Entomol 34: 241–245.
Schanderl H, Ferran A, Larroque MM (1985) The Trophic and Thermal Requirements of Larvae of the Ladybeetle Harmonia-Axyridis Pallas. Agronomie 5: 417–421.
Stathas GJ, Kontodimas DC, Karamaouna F, Kampouris S (2011) Thermal requirements and effect of temperature and prey on the development of the predator Harmonia axyridis. Environ Entomol 40: 1541–1545. PubMed
Castro CF, Almeida LM, Penteado SRC (2011) The impact of temperature on biological aspects and life table of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Fla Entomol 94: 923–932.
Knapp M (2012) Preservative fluid and storage conditions alter body mass estimation in a terrestrial insect. Entomol ExpAppl 143: 185–190.
Schneider CA, Rasband WS Eliceiri (2012) K (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675. PubMed PMC
R Development Core Team (2012) R: A language and environment for statistical computing.
Pinheiro J, Bates D, DebRoy S, Sarkar D (2013) Nlme: linear and nonlinear mixed effects models. R package version 3.1–107.
Moya-Larano J, Macias-Ordonez R, Blanckenhorn WU, Fernandez-Montraveta C (2008) Analysing body condition: mass, volume or density? J Anim Ecol 77: 1099–1108. PubMed
Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50: 346–363. PubMed
Angilletta MJ, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integr Comp Biol 44: 498–509. PubMed
David JR, Yassin A, Moreteau JC, Legout H, Moreteau B (2011) Thermal phenotypic plasticity of body size in Drosophila melanogaster: sexual dimorphism and genetic correlations. J Gen 90: 295–302. PubMed
Steigenga MJ, Fischer K (2009) Fitness consequences of variation in developmental temperature in a butterfly. J Therm Biol 34: 244–249.
Ohashi K, Sakuratani Y, Osawa N, Yano S, Takafuji A (2005) Thermal microhabitat use by the ladybird beetle, Coccinella septempunctata (Coleoptera: Coccinellidae), and its life cycle consequences. Environ Entomol 34: 432–439.
Woods HA, Hill RI (2004) Temperature-dependent oxygen limitation in insect eggs. J Exp Biol 207: 2267–2276. PubMed
Potter KA, Davidowitz G, Woods HA (2011) Cross-stage consequences of egg temperature in the insect Manduca sexta. Funct Ecol 25: 548–556.
Dmitriew C, Blows MW, Rowe L (2010) Ontogenetic change in genetic variance in size depends on growth environment. Am Nat 175: 640–649. PubMed
Belyakova NA (2011) Genetic Heterogeneity and Adaptive Strategies of the Ladybird Harmonia axyridis Pall. (Coleoptera, Coccinellidae). J Evol Biochem Physiol 47: 552–558. PubMed
Nedvěd O, Fois X, Ungerová D (in press) Family effect in body mass and developmental time of Harmonia axyridis. IOBC Bull.
Teder T (2005) Male-biased size dimorphism in ichneumonine wasps (Hymenoptera: Ichneumonidae) - the role of sexual selection for large male size. Ecol Entomol 30: 342–349.
Strobbe F, Stoks R (2004) Life history reaction norms to time constraints in a damselfly: differential effects on size and mass. Biol J Linn Soc 83: 187–196.
Karl I, Fischer K (2008) Why get big in the cold? Towards a solution to a life-history puzzle. Oecologia 155: 215–225. PubMed
Briscoe NJ, Porter WP, Sunnucks P, Kearney MR (2012) Stage-dependent physiological responses in a butterfly cause non-additive effects on phenology. Oikos 121: 1464–1472.
Forsman A, Appelqvist S (1999) Experimental manipulation reveals differential effects of colour pattern on survival in male and female pygmy grasshoppers. J Evol Biol 12: 391–401.
Stoehr AM, Goux H (2008) Seasonal phenotypic plasticity of wing melanisation in the cabbage white butterfly, Pieris rapae L. (Lepidoptera: Pieridae). Ecol Entomol 33: 137–143.
Punzalan D, Rodd FH, Rowe L (2008) Sexual selection mediated by the thermoregulatory effects of male colour pattern in the ambush bug Phymata americana. Proc R Soc B Biol Sci 275: 483–492. PubMed PMC
Ellers J, Boggs CL (2003) The evolution of wing color: Male mate choice opposes adaptive wing color divergence in Colias butterflies. Evolution 57: 1100–1106. PubMed
Freitak D, Knorr E, Vogel H, Vilcinskas A (2012) Gender- and stressor-specific microRNA expression in Tribolium castaneum. Biol Lett 8: 860–863. PubMed PMC
Armitage SAO, Siva-Jothy MT (2005) Immune function responds to selection for cuticular colour in Tenebrio molitor. Heredity 94: 650–656. PubMed
Cotter SC, Myatt JP, Benskin CMH, Wilson K (2008) Selection for cuticular melanism reveals immune function and life-history trade-offs in Spodoptera littoralis. J Evol Biol 21: 1744–1754. PubMed
Shi ZH, Sun JH (2010) Immunocompetence of the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae): Variation between developmental stages and sexes in populations in China. J Ins Physiol 56: 1696–1701. PubMed
Bezzerides AL, McGraw KJ, Parker RS, Husseini J (2007) Elytra color as a signal of chemical defense in the Asian ladybird beetle Harmonia axyridis. Behav Ecol Sociobiol 61: 1401–1408.
Carrel JE, McCairel MH, Slagle AJ, Doom JP, Brill J, et al. (1993) Cantharidin Production in a Blister Beetle. Experientia 49: 171–174. PubMed
Dolenská M, Nedvěd O, Veselý P, Tesařová M, Fuchs R (2009) What constitutes optical warning signals of ladybirds (Coleoptera: Coccinellidae) towards bird predators: colour, pattern or general look? Biol J Linn Soc 98: 234–242.
Hu YW, Yuan X, Lei CL (2011) Sexual size dimorphism decreases with temperature in a blowfly, Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae). Ecol Entomol 36: 111–115.
Ketola T, Kristensen TN, Kellermann VM, Loeschcke V (2012) Can evolution of sexual dimorphism be triggered by developmental temperatures? J Evol Biol 25: 847–855. PubMed
Folguera G, Mensch J, Munoz JL, Ceballos SG, Hasson E, et al. (2010) Ontogenetic stage-dependent effect of temperature on developmental and metabolic rates in a holometabolous insect. J Ins Physiol 56: 1679–1684. PubMed
Petersen C, Woods HA, Kingsolver JG (2000) Stage-specific effects of temperature and dietary protein on growth and survival of Manduca sexta caterpillars. Physiol Entomol 25: 35–40.