Conserved temperature requirements but contrasting responses to humidity across oviposition preferences in temperate grasshoppers

. 2023 Nov 30 ; 13 (1) : 21131. [epub] 20231130

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38036615

Grantová podpora
SS02030018 Technology Agency of the Czech Republic

Odkazy

PubMed 38036615
PubMed Central PMC10689742
DOI 10.1038/s41598-023-47789-z
PII: 10.1038/s41598-023-47789-z
Knihovny.cz E-zdroje

The right choice of an oviposition site is a crucial task for oviparous species without maternal care. In contrast to well investigated biotic factors, e.g., larval food preferences, parasitism, predation, and competition avoiding, abiotic factors affecting oviposition preferences in insects have been rarely investigated in comparative studies. To improve our current understanding of oviposition site selection in Orthoptera, we investigated the influence of substrate temperature and moisture on the oviposition behaviour of 14 temperate grasshopper species. Conspecific groups of adults were kept in arenas with simultaneous temperature and moisture gradients. For each ootheca produced during the experiment (n = 1192) we recorded its depth and local microclimatic conditions. Our results indicate that microclimatic oviposition preferences significantly differ among species, however, correlations between adult habitat preferences and microclimatic oviposition preferences were surprisingly weak. Even oligothermic species preferred substrate temperatures around 30 °C and some xerothermic species preferred higher humidity. The hypothesized tendency to place oothecae closer to the ground within grass tussocks under hot and dry conditions was confirmed. It is possible that species evaluate microclimatic conditions for oviposition in the context of occupied habitat, i.e., in a relative rather than absolute manner.

Zobrazit více v PubMed

Refsnider JM, Janzen FJ. Putting eggs in one basket: Ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu. Rev. Ecol. Evol. Syst. 2010;41:39–57. doi: 10.1146/annurev-ecolsys-102209-144712. DOI

Mitchell R. The evolution of oviposition tactics in the Bean Weevil, Callosobruchus maculatus (F.) Ecology. 1975;56:696–702. doi: 10.2307/1935504. DOI

Jaenike J. On optimal oviposition behaviour in phytophagous insect. Theor. Popul. Biol. 1978;14:350–356. doi: 10.1016/0040-5809(78)90012-6. PubMed DOI

Bernays E, Graham M. On the evolution of host specificity in phytophagous arthropods. Ecology. 1988;69:886–892. doi: 10.2307/1941237. DOI

Almohamad R, Verheggen FJ, Francis F, Haubruge E. Predatory hoverflies select their oviposition site according to aphid host plant and aphid species. Entomol. Exp. Appl. 2007;125:13–21. doi: 10.1111/j.1570-7458.2007.00596.x. DOI

Morse DH. Where should I lay my eggs? Oviposition choices of a shelter-building moth and the shifting danger of being parasitized. Entomol. Exp. Appl. 2017;165:1–8. doi: 10.1111/eea.12625. DOI

Stauffer TW, Whitman DW. Divergent oviposition behaviors in a desert vs a marsh grasshopper. J. Orthoptera Res. 2007;16:103–114. doi: 10.1665/1082-6467(2007)16[103:DOBIAD]2.0.CO;2. DOI

Eilers S, Pettersson LB, Öckinger E. Micro-climate determines oviposition site selection and abundance in the butterfly Pyrgus armoricanus at its northern range margin: Micro-climate and oviposition. Ecol. Entomol. 2013;38:183–192. doi: 10.1111/een.12008. DOI

de Farias-Martins F, et al. Forest litter crickets prefer higher substrate moisture for oviposition: Evidence from field and lab experiments. PLoS ONE. 2017;12:1–16. PubMed PMC

Reedy AM, Zaragoza D, Warner DA. Maternally chosen nest sites positively affect multiple components of offspring fitness in a lizard. Behav. Ecol. 2013;24:39–46. doi: 10.1093/beheco/ars133. DOI

Mainwaring MC, et al. Climate change and nesting behaviour in vertebrates: a review of the ecological threats and potential for adaptive responses: Climate change and nesting behaviour. Biol. Rev. 2017;92:1991–2002. doi: 10.1111/brv.12317. PubMed DOI

Doody JS, et al. Plasticity in nest site choice behavior in response to hydric conditions in a reptile. Sci. Rep. 2020;10:16048. doi: 10.1038/s41598-020-73080-6. PubMed DOI PMC

Schnebel EM, Grossfield J. Oviposition temperature range in four Drosophila species triads from different ecological backgrounds. Am. Midl. Nat. 1986;116:25. doi: 10.2307/2425934. PubMed DOI

Chapman RF, Simpson SJ, Douglas AE. The Insects: Structure and Function. Cambridge University Press; 2013.

Gardiner T, Hassall M. Does microclimate affect grasshopper populations after cutting of hay in improved grassland? J. Insect Conserv. 2009;13:97–102. doi: 10.1007/s10841-007-9129-y. DOI

Loeffler F, Poniatowski D, Fartmann T. Orthoptera community shifts in response to land-use and climate change—Lessons from a long-term study across different grassland habitats. Biol. Conserv. 2019;236:315–323. doi: 10.1016/j.biocon.2019.05.058. DOI

Bladon AJ, et al. How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends. J. Anim. Ecol. 2020;89:2440–2450. doi: 10.1111/1365-2656.13319. PubMed DOI

Esbjerg P, Lauritzen AJ. Oviposition response of the Turnip moth to soil moisture. Acta Agric. Scand. Sect. B Plant Soil Sci. 2010;60:89–94.

Howard DJ, Harrison RG. Habitat segregation in ground crickets: Experimental studies of adult survival, reproductive success, and oviposition preference. Ecology. 1984;65:61–68. doi: 10.2307/1939458. DOI

Brust GE, House GJ. Influence of soil texture, soil moisture, organic cover, and weeds on oviposition preference of southern corn rootworm (Coleoptera: Chrysomelidae) Environ. Entomol. 1990;19:966–971. doi: 10.1093/ee/19.4.966. DOI

Ingrisch S, Köhler G. Die Heuschrecken mitteleuropas. Die Neue Brehm-Bücherei; 1998.

Fisher JR. Location of egg pods of Aulocara elliotti (Orthoptera: Acrididae) in a field of crested wheatgrass in Montana. J. Kans. Entomol. Soc. 1992;65:416–420.

Ward AL, Rogers DJ. Oviposition response of scarabaeids: Does ‘mother knows best’ about rainfall variability and soil moisture? Physiol. Entomol. 2007;32:357–366. doi: 10.1111/j.1365-3032.2007.00587.x. DOI

Herrmann DL, Ko AE, Bhatt S, Jannot JE, Juliano SA. Geographic variation in size and oviposition depths of Romalea microptera (Orthoptera: Acrididae) is associated with different soil conditions. Ann. Entomol. Soc. Am. 2010;103:227–235. doi: 10.1603/AN09131. DOI

Fielding DJ. Oviposition site selection by the grasshoppers Melanoplus borealis and M. sanguinipes (Orthoptera: Acrididae) J. Orthoptera Res. 2011;20:75–80. doi: 10.1665/034.020.0107. DOI

Willis JC, et al. The importance of temperature and moisture to the egg-laying behaviour of a pest slug, Decoceras reticulatum. Ann. Appl. Biol. 2008;153:105–115. doi: 10.1111/j.1744-7348.2008.00242.x. DOI

Lepage MP, Bourgeois G, Brodeur J, Boivin G. Effect of soil temperature and moisture on survival of eggs and first-instar larvae of Delia radicum. Environ. Entomol. 2012;41:159–165. doi: 10.1603/EN10313. PubMed DOI

Kenyeres Z, Bauer N, Rácz IA. Local and global factors in organization of Central-European orthopteran assemblages. Russ. J. Ecol. 2014;45:375–383. doi: 10.1134/S1067413614050075. DOI

Jonas JL, Wolesensky W, Joern A. Weather affects grasshopper population dynamics in continental grassland over annual and decadal periods. Rangel. Ecol. Manag. 2015;68:29–39. doi: 10.1016/j.rama.2014.12.011. DOI

Dvořák T, Hadrava J, Knapp M. The ecological niche and conservation value of Central European grassland orthopterans: A quantitative approach. Biol. Conserv. 2022;265:109406. doi: 10.1016/j.biocon.2021.109406. DOI

Choudhuri JCB. Experimental studies on the choice of oviposition sites by two species of Chorthippus (Orthoptera: Acrididae) J. Anim. Ecol. 1958;27:201. doi: 10.2307/2239. DOI

Van Wingerden WKRE, Musters JCM, Maaskamp FIM. The influence of temperature on the duration of egg development in West European grasshoppers (Orthoptera: Acrididae) Oecologia. 1991;87:417–423. doi: 10.1007/BF00634600. PubMed DOI

Čelik T. Oviposition preferences of a threatened butterfly Leptidea morsei (Lepidoptera: Pieridae) at the western border of its range. J. Insect Conserv. 2013;17:865–876. doi: 10.1007/s10841-013-9567-7. DOI

Stoutjesdijk P, Barkman JJ. Microclimate, Vegetation and Fauna. KNNV Publ; 2014.

Marrone PG, Stinner RE. Effects of soil moisture and texture on oviposition preference of the bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Coccinellidae) Environ. Entomol. 1983;12:426–428. doi: 10.1093/ee/12.2.426. DOI

Kočárek P, Holuša J, Vlk R, Marhoul P. Rovnokřídlí České republiky. Academia; 2015.

Sibly R, Monk K. A theory of grasshopper life cycles. Oikos. 1987;48:186–194. doi: 10.2307/3565854. DOI

Feder ME, Blair N, Figueras H. Oviposition site selection: Unresponsiveness of Drosophila to cues of potential thermal stress. Anim. Behav. 1997;53:585–588. doi: 10.1006/anbe.1996.0333. DOI

Fielding DJ. Developmental time of Melanoplus sanguinipes (Orthoptera: Acrididae) at high latitudes. Environ. Entomol. 2004;33:1513–1522. doi: 10.1603/0046-225X-33.6.1513. DOI

Gustin RD. Effect of two moisture and population levels on oviposition of the western corn Rootworm123. Environ. Entomol. 1979;8:406–407. doi: 10.1093/ee/8.3.406. DOI

San Martin y Gomez G, Van Dyck H. Ecotypic differentiation between urban and rural populations of the grasshopper Chorthippus brunneus relative to climate and habitat fragmentation. Oecologia. 2012;169:125–133. doi: 10.1007/s00442-011-2189-4. PubMed DOI

Köehler G. Erfahrungern zur Haltung und Zucht von Gomophocerinae (Acrididae) für ökophysiologische Experimente. Articulata. 2021;36:113–148.

Fartmann T, Brüggeshemke J, Poniatowski D, Löffler F. Summer drought affects abundance of grassland grasshoppers differently along an elevation gradient. Ecol. Entomol. 2022;47:778–790. doi: 10.1111/een.13168. DOI

Knapp M, Nedvěd O. Gender and timing during ontogeny matter: Effects of a temporary high temperature on survival, body size and colouration in Harmonia axyridis. PLoS ONE. 2013;8:e74984. doi: 10.1371/journal.pone.0074984. PubMed DOI PMC

Sevastianov N, Neretina T, Vedenina V. Evolution of calling songs in the grasshopper subfamily Gomphocerinae (Orthoptera, Acrididae) Zool. Scr. 2023;52:154–175. doi: 10.1111/zsc.12579. DOI

Ratnasingham S, Hebert PDN. BARCODING: bold: The Barcode of Life Data System (http://www.barcodinglife.org): BARCODING. Mol. Ecol. Notes. 2007;7:355–364. doi: 10.1111/j.1471-8286.2007.01678.x. PubMed DOI PMC

Larsson A. AliView: A fast and lightweight alignment viewer and editor for large data sets. Bioinformatics. 2014;30:3276–3278. doi: 10.1093/bioinformatics/btu531. PubMed DOI PMC

Bouckaert R, et al. An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019;15:e1006650. doi: 10.1371/journal.pcbi.1006650. PubMed DOI PMC

Bolstad GH, et al. genetic constraints predict evolutionary divergence in Dalechampia blossoms. Philos. Trans. R. Soc. B Biol. Sci. 2014;369:20130255. doi: 10.1098/rstb.2013.0255. PubMed DOI PMC

R Core Team. R: A Language and Environment for Statistical Computinghttps://www.R-project.org/. (R Foundation for Statistical Computing, 2020).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...