Conserved temperature requirements but contrasting responses to humidity across oviposition preferences in temperate grasshoppers
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SS02030018
Technology Agency of the Czech Republic
PubMed
38036615
PubMed Central
PMC10689742
DOI
10.1038/s41598-023-47789-z
PII: 10.1038/s41598-023-47789-z
Knihovny.cz E-zdroje
- MeSH
- brouci * MeSH
- kladení vajíček fyziologie MeSH
- kobylky * MeSH
- larva MeSH
- teplota MeSH
- vlhkost MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The right choice of an oviposition site is a crucial task for oviparous species without maternal care. In contrast to well investigated biotic factors, e.g., larval food preferences, parasitism, predation, and competition avoiding, abiotic factors affecting oviposition preferences in insects have been rarely investigated in comparative studies. To improve our current understanding of oviposition site selection in Orthoptera, we investigated the influence of substrate temperature and moisture on the oviposition behaviour of 14 temperate grasshopper species. Conspecific groups of adults were kept in arenas with simultaneous temperature and moisture gradients. For each ootheca produced during the experiment (n = 1192) we recorded its depth and local microclimatic conditions. Our results indicate that microclimatic oviposition preferences significantly differ among species, however, correlations between adult habitat preferences and microclimatic oviposition preferences were surprisingly weak. Even oligothermic species preferred substrate temperatures around 30 °C and some xerothermic species preferred higher humidity. The hypothesized tendency to place oothecae closer to the ground within grass tussocks under hot and dry conditions was confirmed. It is possible that species evaluate microclimatic conditions for oviposition in the context of occupied habitat, i.e., in a relative rather than absolute manner.
Department of Zoology Faculty of Science Charles University Viničná 7 Prague 2 128 00 Czech Republic
Zobrazit více v PubMed
Refsnider JM, Janzen FJ. Putting eggs in one basket: Ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu. Rev. Ecol. Evol. Syst. 2010;41:39–57. doi: 10.1146/annurev-ecolsys-102209-144712. DOI
Mitchell R. The evolution of oviposition tactics in the Bean Weevil, Callosobruchus maculatus (F.) Ecology. 1975;56:696–702. doi: 10.2307/1935504. DOI
Jaenike J. On optimal oviposition behaviour in phytophagous insect. Theor. Popul. Biol. 1978;14:350–356. doi: 10.1016/0040-5809(78)90012-6. PubMed DOI
Bernays E, Graham M. On the evolution of host specificity in phytophagous arthropods. Ecology. 1988;69:886–892. doi: 10.2307/1941237. DOI
Almohamad R, Verheggen FJ, Francis F, Haubruge E. Predatory hoverflies select their oviposition site according to aphid host plant and aphid species. Entomol. Exp. Appl. 2007;125:13–21. doi: 10.1111/j.1570-7458.2007.00596.x. DOI
Morse DH. Where should I lay my eggs? Oviposition choices of a shelter-building moth and the shifting danger of being parasitized. Entomol. Exp. Appl. 2017;165:1–8. doi: 10.1111/eea.12625. DOI
Stauffer TW, Whitman DW. Divergent oviposition behaviors in a desert vs a marsh grasshopper. J. Orthoptera Res. 2007;16:103–114. doi: 10.1665/1082-6467(2007)16[103:DOBIAD]2.0.CO;2. DOI
Eilers S, Pettersson LB, Öckinger E. Micro-climate determines oviposition site selection and abundance in the butterfly Pyrgus armoricanus at its northern range margin: Micro-climate and oviposition. Ecol. Entomol. 2013;38:183–192. doi: 10.1111/een.12008. DOI
de Farias-Martins F, et al. Forest litter crickets prefer higher substrate moisture for oviposition: Evidence from field and lab experiments. PLoS ONE. 2017;12:1–16. PubMed PMC
Reedy AM, Zaragoza D, Warner DA. Maternally chosen nest sites positively affect multiple components of offspring fitness in a lizard. Behav. Ecol. 2013;24:39–46. doi: 10.1093/beheco/ars133. DOI
Mainwaring MC, et al. Climate change and nesting behaviour in vertebrates: a review of the ecological threats and potential for adaptive responses: Climate change and nesting behaviour. Biol. Rev. 2017;92:1991–2002. doi: 10.1111/brv.12317. PubMed DOI
Doody JS, et al. Plasticity in nest site choice behavior in response to hydric conditions in a reptile. Sci. Rep. 2020;10:16048. doi: 10.1038/s41598-020-73080-6. PubMed DOI PMC
Schnebel EM, Grossfield J. Oviposition temperature range in four Drosophila species triads from different ecological backgrounds. Am. Midl. Nat. 1986;116:25. doi: 10.2307/2425934. PubMed DOI
Chapman RF, Simpson SJ, Douglas AE. The Insects: Structure and Function. Cambridge University Press; 2013.
Gardiner T, Hassall M. Does microclimate affect grasshopper populations after cutting of hay in improved grassland? J. Insect Conserv. 2009;13:97–102. doi: 10.1007/s10841-007-9129-y. DOI
Loeffler F, Poniatowski D, Fartmann T. Orthoptera community shifts in response to land-use and climate change—Lessons from a long-term study across different grassland habitats. Biol. Conserv. 2019;236:315–323. doi: 10.1016/j.biocon.2019.05.058. DOI
Bladon AJ, et al. How butterflies keep their cool: Physical and ecological traits influence thermoregulatory ability and population trends. J. Anim. Ecol. 2020;89:2440–2450. doi: 10.1111/1365-2656.13319. PubMed DOI
Esbjerg P, Lauritzen AJ. Oviposition response of the Turnip moth to soil moisture. Acta Agric. Scand. Sect. B Plant Soil Sci. 2010;60:89–94.
Howard DJ, Harrison RG. Habitat segregation in ground crickets: Experimental studies of adult survival, reproductive success, and oviposition preference. Ecology. 1984;65:61–68. doi: 10.2307/1939458. DOI
Brust GE, House GJ. Influence of soil texture, soil moisture, organic cover, and weeds on oviposition preference of southern corn rootworm (Coleoptera: Chrysomelidae) Environ. Entomol. 1990;19:966–971. doi: 10.1093/ee/19.4.966. DOI
Ingrisch S, Köhler G. Die Heuschrecken mitteleuropas. Die Neue Brehm-Bücherei; 1998.
Fisher JR. Location of egg pods of Aulocara elliotti (Orthoptera: Acrididae) in a field of crested wheatgrass in Montana. J. Kans. Entomol. Soc. 1992;65:416–420.
Ward AL, Rogers DJ. Oviposition response of scarabaeids: Does ‘mother knows best’ about rainfall variability and soil moisture? Physiol. Entomol. 2007;32:357–366. doi: 10.1111/j.1365-3032.2007.00587.x. DOI
Herrmann DL, Ko AE, Bhatt S, Jannot JE, Juliano SA. Geographic variation in size and oviposition depths of Romalea microptera (Orthoptera: Acrididae) is associated with different soil conditions. Ann. Entomol. Soc. Am. 2010;103:227–235. doi: 10.1603/AN09131. DOI
Fielding DJ. Oviposition site selection by the grasshoppers Melanoplus borealis and M. sanguinipes (Orthoptera: Acrididae) J. Orthoptera Res. 2011;20:75–80. doi: 10.1665/034.020.0107. DOI
Willis JC, et al. The importance of temperature and moisture to the egg-laying behaviour of a pest slug, Decoceras reticulatum. Ann. Appl. Biol. 2008;153:105–115. doi: 10.1111/j.1744-7348.2008.00242.x. DOI
Lepage MP, Bourgeois G, Brodeur J, Boivin G. Effect of soil temperature and moisture on survival of eggs and first-instar larvae of Delia radicum. Environ. Entomol. 2012;41:159–165. doi: 10.1603/EN10313. PubMed DOI
Kenyeres Z, Bauer N, Rácz IA. Local and global factors in organization of Central-European orthopteran assemblages. Russ. J. Ecol. 2014;45:375–383. doi: 10.1134/S1067413614050075. DOI
Jonas JL, Wolesensky W, Joern A. Weather affects grasshopper population dynamics in continental grassland over annual and decadal periods. Rangel. Ecol. Manag. 2015;68:29–39. doi: 10.1016/j.rama.2014.12.011. DOI
Dvořák T, Hadrava J, Knapp M. The ecological niche and conservation value of Central European grassland orthopterans: A quantitative approach. Biol. Conserv. 2022;265:109406. doi: 10.1016/j.biocon.2021.109406. DOI
Choudhuri JCB. Experimental studies on the choice of oviposition sites by two species of Chorthippus (Orthoptera: Acrididae) J. Anim. Ecol. 1958;27:201. doi: 10.2307/2239. DOI
Van Wingerden WKRE, Musters JCM, Maaskamp FIM. The influence of temperature on the duration of egg development in West European grasshoppers (Orthoptera: Acrididae) Oecologia. 1991;87:417–423. doi: 10.1007/BF00634600. PubMed DOI
Čelik T. Oviposition preferences of a threatened butterfly Leptidea morsei (Lepidoptera: Pieridae) at the western border of its range. J. Insect Conserv. 2013;17:865–876. doi: 10.1007/s10841-013-9567-7. DOI
Stoutjesdijk P, Barkman JJ. Microclimate, Vegetation and Fauna. KNNV Publ; 2014.
Marrone PG, Stinner RE. Effects of soil moisture and texture on oviposition preference of the bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Coccinellidae) Environ. Entomol. 1983;12:426–428. doi: 10.1093/ee/12.2.426. DOI
Kočárek P, Holuša J, Vlk R, Marhoul P. Rovnokřídlí České republiky. Academia; 2015.
Sibly R, Monk K. A theory of grasshopper life cycles. Oikos. 1987;48:186–194. doi: 10.2307/3565854. DOI
Feder ME, Blair N, Figueras H. Oviposition site selection: Unresponsiveness of Drosophila to cues of potential thermal stress. Anim. Behav. 1997;53:585–588. doi: 10.1006/anbe.1996.0333. DOI
Fielding DJ. Developmental time of Melanoplus sanguinipes (Orthoptera: Acrididae) at high latitudes. Environ. Entomol. 2004;33:1513–1522. doi: 10.1603/0046-225X-33.6.1513. DOI
Gustin RD. Effect of two moisture and population levels on oviposition of the western corn Rootworm123. Environ. Entomol. 1979;8:406–407. doi: 10.1093/ee/8.3.406. DOI
San Martin y Gomez G, Van Dyck H. Ecotypic differentiation between urban and rural populations of the grasshopper Chorthippus brunneus relative to climate and habitat fragmentation. Oecologia. 2012;169:125–133. doi: 10.1007/s00442-011-2189-4. PubMed DOI
Köehler G. Erfahrungern zur Haltung und Zucht von Gomophocerinae (Acrididae) für ökophysiologische Experimente. Articulata. 2021;36:113–148.
Fartmann T, Brüggeshemke J, Poniatowski D, Löffler F. Summer drought affects abundance of grassland grasshoppers differently along an elevation gradient. Ecol. Entomol. 2022;47:778–790. doi: 10.1111/een.13168. DOI
Knapp M, Nedvěd O. Gender and timing during ontogeny matter: Effects of a temporary high temperature on survival, body size and colouration in Harmonia axyridis. PLoS ONE. 2013;8:e74984. doi: 10.1371/journal.pone.0074984. PubMed DOI PMC
Sevastianov N, Neretina T, Vedenina V. Evolution of calling songs in the grasshopper subfamily Gomphocerinae (Orthoptera, Acrididae) Zool. Scr. 2023;52:154–175. doi: 10.1111/zsc.12579. DOI
Ratnasingham S, Hebert PDN. BARCODING: bold: The Barcode of Life Data System (http://www.barcodinglife.org): BARCODING. Mol. Ecol. Notes. 2007;7:355–364. doi: 10.1111/j.1471-8286.2007.01678.x. PubMed DOI PMC
Larsson A. AliView: A fast and lightweight alignment viewer and editor for large data sets. Bioinformatics. 2014;30:3276–3278. doi: 10.1093/bioinformatics/btu531. PubMed DOI PMC
Bouckaert R, et al. An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019;15:e1006650. doi: 10.1371/journal.pcbi.1006650. PubMed DOI PMC
Bolstad GH, et al. genetic constraints predict evolutionary divergence in Dalechampia blossoms. Philos. Trans. R. Soc. B Biol. Sci. 2014;369:20130255. doi: 10.1098/rstb.2013.0255. PubMed DOI PMC
R Core Team. R: A Language and Environment for Statistical Computinghttps://www.R-project.org/. (R Foundation for Statistical Computing, 2020).