The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans

. 2021 Dec 25 ; 11 (1) : . [epub] 20211225

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35009065

Grantová podpora
QK1910045 Ministry of Agriculture
AF-IGA2021-IP075 Mendel University in Brno
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministry of Education Youth and Sports

Wild Solanum accessions are a treasured source of resistance against pathogens, including oomycete Phytophthora infestans, causing late blight disease. Here, Solanum pinnatisectum, Solanum tuberosum, and the somatic hybrid between these two lines were analyzed, representing resistant, susceptible, and moderately resistant genotypes, respectively. Proteome and metabolome analyses showed that the infection had the highest impact on leaves of the resistant plant and indicated, among others, an extensive remodeling of the leaf lipidome. The lipidome profiling confirmed an accumulation of glycerolipids, a depletion in the total pool of glycerophospholipids, and showed considerable differences between the lipidome composition of resistant and susceptible genotypes. The analysis of putative resistance markers pinpointed more than 100 molecules that positively correlated with resistance including phenolics and cysteamine, a compound with known antimicrobial activity. Putative resistance protein markers were targeted in an additional 12 genotypes with contrasting resistance to P. infestans. At least 27 proteins showed a negative correlation with the susceptibility including HSP70-2, endochitinase B, WPP domain-containing protein, and cyclase 3. In summary, these findings provide insights into molecular mechanisms of resistance against P. infestans and present novel targets for selective breeding.

Zobrazit více v PubMed

Savary S., Willocquet L., Pethybridge S.J., Esker P., McRoberts N., Nelson A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019;3:430–439. doi: 10.1038/s41559-018-0793-y. PubMed DOI

Fry W.E., Birch P.R.J., Judelson H.S., Grünwald N.J., Danies G., Everts K.L., Gevens A.J., Gugino B.K., Johnson D.A., Johnson S.B., et al. Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology. 2015;105:966–981. doi: 10.1094/PHYTO-01-15-0005-FI. PubMed DOI

Leesutthiphonchai W., Vu A.L., Ah-Fong A.M.V., Judelson H.S. How does Phytophthora infestans evade control efforts? Modern insight into the late blight disease. Phytopathology. 2018;108:916–924. doi: 10.1094/PHYTO-04-18-0130-IA. PubMed DOI

Nowicki M., Foolad M.R., Nowakowska M., Kozik E.U. Potato and tomato late blight caused by Phytophthora infestans: An overview of pathology and resistance breeding. Plant Dis. 2012;96:4–17. doi: 10.1094/PDIS-05-11-0458. PubMed DOI

Machida-Hirano R. Diversity of potato genetic resources. Breed. Sci. 2015;65:26–40. doi: 10.1270/jsbbs.65.26. PubMed DOI PMC

Karki H.S., Jansky S.H., Halterman D.A. Screening of wild potatoes identifies new sources of late blight resistance. Plant Dis. 2021;105:368–376. doi: 10.1094/PDIS-06-20-1367-RE. PubMed DOI

Vetukuri R.R., Masini L., McDougal R., Panda P., de Zinger L., Brus-Szkalej M., Lankinen Å., Grenville-Briggs L.J. The presence of Phytophthora infestans in the rhizosphere of a wild Solanum species may contribute to off-season survival and pathogenicity. Appl. Soil Ecol. 2020;148:103475. doi: 10.1016/j.apsoil.2019.103475. DOI

Van Weymers P.S.M., Baker K., Chen X., Harrower B., Cooke D.E.L., Gilroy E.M., Birch P.R.J., Thilliez G.J.A., Lees A.K., Lynott J.S., et al. Utilizing “Omic” technologies to identify and prioritize novel sources of resistance to the oomycete pathogen Phytophthora infestans in potato germplasm collections. Front. Plant Sci. 2016;7:672. doi: 10.3389/fpls.2016.00672. PubMed DOI PMC

Zheng J., Duan S., Armstrong M.R., Duan Y., Xu J., Chen X., Hein I., Jin L., Li G. New findings on the resistance mechanism of an elite diploid wild potato species JAM1-4 in response to a super race strain of Phytophthora infestans. Phytopathology. 2020;110:1375–1387. doi: 10.1094/PHYTO-09-19-0331-R. PubMed DOI

Gu B., Cao X., Zhou X., Chen Z., Wang Q., Liu W., Chen Q., Zhao H. The histological, effectoromic, and transcriptomic analyses of Solanum pinnatisectum reveal an upregulation of multiple NBS-LRR genes suppressing Phytophthora infestans Infection. Int. J. Mol. Sci. 2020;21:3211. doi: 10.3390/ijms21093211. PubMed DOI PMC

Pérez W., Ñahui M., Ellis D., Forbes G.A. Wide phenotypic diversity for resistance to Phytophthora infestans found in potato landraces from Peru. Plant Dis. 2014;98:1530–1533. doi: 10.1094/PDIS-03-14-0306-RE. PubMed DOI

Bachmann-Pfabe S., Hammann T., Kruse J., Dehmer K.J. Screening of wild potato genetic resources for combined resistance to late blight on tubers and pale potato cyst nematodes. Euphytica. 2019;215:48. doi: 10.1007/s10681-019-2364-y. DOI

Akino S., Takemoto D., Hosaka K. Phytophthora infestans: A review of past and current studies on potato late blight. J. Gen. Plant Pathol. 2014;80:24–37. doi: 10.1007/s10327-013-0495-x. DOI

Pathania A., Rialch N., Sharma P.N. Current Developments in Biotechnology and Bioengineering. Elsevier; Amsterdam, The Netherlands: 2017. Marker-assisted selection in disease resistance breeding; pp. 187–213.

Ramakrishnan A.P., Ritland C.E., Blas Sevillano R.H., Riseman A. Review of potato molecular markers to enhance trait selection. Am. J. Potato Res. 2015;92:455–472. doi: 10.1007/s12230-015-9455-7. DOI

Slater A.T., Cogan N.O.I., Forster J.W. Cost analysis of the application of marker-assisted selection in potato breeding. Mol. Breed. 2013;32:299–310. doi: 10.1007/s11032-013-9871-7. DOI

Ortega F., Lopez-Vizcon C. Application of molecular marker-assisted selection (MAS) for disease resistance in a practical potato breeding programme. Potato Res. 2012;55:1–13. doi: 10.1007/s11540-011-9202-5. DOI

Lamichhane J.R., Osdaghi E., Behlau F., Köhl J., Jones J.B., Aubertot J.-N. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 2018;38:28. doi: 10.1007/s13593-018-0503-9. DOI

Najdabbasi N., Mirmajlessi S.M., Dewitte K., Ameye M., Mänd M., Audenaert K., Landschoot S., Haesaert G. Green leaf volatile confers management of late blight disease: A green vaccination in potato. J. Fungi. 2021;7:312. doi: 10.3390/jof7040312. PubMed DOI PMC

Elsherbiny E.A., Amin B.H., Aleem B., Kingsley K.L., Bennett J.W. Trichoderma volatile organic compounds as a biofumigation tool against late blight pathogen Phytophthora infestans in postharvest potato tubers. J. Agric. Food Chem. 2020;68:8163–8171. doi: 10.1021/acs.jafc.0c03150. PubMed DOI

Yao Y., Li Y., Chen Z., Zheng B., Zhang L., Niu B., Meng J., Li A., Zhang J., Wang Q. Biological control of potato late blight using isolates of Trichoderma. Am. J. Potato Res. 2016;93:33–42. doi: 10.1007/s12230-015-9475-3. DOI

Hadwiger L.A., McDonel H., Glawe D. Wild yeast strains as prospective candidates to induce resistance against potato late blight (Phytophthora infestans) Am. J. Potato Res. 2015;92:379–386. doi: 10.1007/s12230-015-9443-y. DOI

De Vrieze M., Pandey P., Bucheli T.D., Varadarajan A.R., Ahrens C.H., Weisskopf L., Bailly A. Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents. Front. Microbiol. 2015;6:1295. doi: 10.3389/fmicb.2015.01295. PubMed DOI PMC

Tiwari J.K., Rawat S., Luthra S.K., Zinta R., Sahu S., Varshney S., Kumar V., Dalamu D., Mandadi N., Kumar M., et al. Genome sequence analysis provides insights on genomic variation and late blight resistance genes in potato somatic hybrid (parents and progeny) Mol. Biol. Rep. 2021;48:623–635. doi: 10.1007/s11033-020-06106-x. PubMed DOI

Tian T., Liu Y., Yan H., You Q., Yi X., Du Z., Xu W., Su Z. agriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45:W122–W129. doi: 10.1093/nar/gkx382. PubMed DOI PMC

Sun L., Dong S., Ge Y., Fonseca J.P., Robinson Z.T., Mysore K.S., Mehta P. DiVenn: An interactive and integrated web-based visualization tool for comparing gene lists. Front. Genet. 2019;10:421. doi: 10.3389/fgene.2019.00421. PubMed DOI PMC

Berka M., Greplová M., Saiz-Fernández I., Novák J., Luklová M., Zelená P., Tomšovský M., Brzobohatý B., Černý M. Peptide-based identification of Phytophthora isolates and Phytophthora detection in planta. Int. J. Mol. Sci. 2020;21:9463. doi: 10.3390/ijms21249463. PubMed DOI PMC

Pang Z., Chong J., Zhou G., De Lima Morais D.A., Chang L., Barrette M., Gauthier C., Jacques P.É., Li S., Xia J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W396. doi: 10.1093/nar/gkab382. PubMed DOI PMC

Von Saint Paul V., Zhang W., Kanawati B., Geist B., Faus-Keßler T., Schmitt-Kopplin P., Schäffner A.R. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. Plant Cell. 2011;23:4124–4145. doi: 10.1105/tpc.111.088443. PubMed DOI PMC

Blum M., Chang H.-Y., Chuguransky S., Grego T., Kandasaamy S., Mitchell A., Nuka G., Paysan-Lafosse T., Qureshi M., Raj S., et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49:D344–D354. doi: 10.1093/nar/gkaa977. PubMed DOI PMC

Thomma B.P.H.J., Eggermont K., Penninckx I.A.M.A., Mauch-Mani B., Vogelsang R., Cammue B.P.A., Broekaert W.F. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA. 1998;95:15107–15111. doi: 10.1073/pnas.95.25.15107. PubMed DOI PMC

Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. Role of proline under changing environments. Plant Signal. Behav. 2012;7:1456–1466. doi: 10.4161/psb.21949. PubMed DOI PMC

Daumann M., Fischer M., Niopek-Witz S., Girke C., Möhlmann T. Apoplastic nucleoside accumulation in Arabidopsis leads to reduced photosynthetic performance and increased susceptibility against Botrytis cinerea. Front. Plant Sci. 2015;6:1158. doi: 10.3389/fpls.2015.01158. PubMed DOI PMC

Zhang J., Jiang L., Sun C., Jin L., Lin M., Huang Y., Zheng X., Yu T. Indole-3-acetic acid inhibits blue mold rot by inducing resistance in pear fruit wounds. Sci. Hortic. 2018;231:227–232. doi: 10.1016/j.scienta.2017.12.046. DOI

Martínez Noël G.M.A., Madrid E.A., Bottini R., Lamattina L. Indole acetic acid attenuates disease severity in potato-Phytophthora infestans interaction and inhibits the pathogen growth in vitro. Plant Physiol. Biochem. 2001;39:815–823. doi: 10.1016/S0981-9428(01)01298-0. DOI

Park C.-J., Seo Y.-S. Heat shock proteins: A review of the molecular chaperones for plant immunity. Plant Pathol. J. 2015;31:323–333. doi: 10.5423/PPJ.RW.08.2015.0150. PubMed DOI PMC

ul Haq S., Khan A., Ali M., Khattak A.M., Gai W.X., Zhang H.X., Wei A.M., Gong Z.H. Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. Int. J. Mol. Sci. 2019;20:5321. doi: 10.3390/ijms20215321. PubMed DOI PMC

Hýsková V., Bělonožníková K., Čeřovská N., Ryšlavá H. HSP70 plays an ambiguous role during viral infections in plants. Biol. Plant. 2021;65:68–79. doi: 10.32615/bp.2021.001. DOI

Noël L.D., Cagna G., Stuttmann J., Wirthmüller L., Betsuyaku S., Witte C.-P.P., Bhat R., Pochon N., Colby T., Parker J.E. Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell. 2008;19:4061–4076. doi: 10.1105/tpc.107.051896. PubMed DOI PMC

Wu X., Yan J., Wu Y., Zhang H., Mo S., Xu X., Zhou F., Ding H. Proteomic analysis by iTRAQ-PRM provides integrated insight into mechanisms of resistance in pepper to Bemisia tabaci (Gennadius) BMC Plant Biol. 2019;19:270. doi: 10.1186/s12870-019-1849-0. PubMed DOI PMC

Klink V.P., Overall C.C., Alkharouf N.W., MacDonald M.H., Matthews B.F. Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines) Planta. 2007;226:1389–1409. doi: 10.1007/s00425-007-0578-z. PubMed DOI

Szajko K., Plich J., Przetakiewicz J., Sołtys-Kalina D., Marczewski W. Comparative proteomic analysis of resistant and susceptible potato cultivars during Synchytrium endobioticum infestation. Planta. 2020;251:4. doi: 10.1007/s00425-019-03306-z. PubMed DOI

Guo H., Zhang H., Wang G., Wang C., Wang Y., Liu X., Ji W. Identification and expression analysis of heat-shock proteins in wheat infected with powdery mildew and stripe rust. Plant Genome. 2021;14:e20092. doi: 10.1002/tpg2.20092. PubMed DOI

Mambula S.S., Stevenson M.A., Ogawa K., Calderwood S.K. Mechanisms for Hsp70 secretion: Crossing membranes without a leader. Methods. 2007;43:168–175. doi: 10.1016/j.ymeth.2007.06.009. PubMed DOI PMC

Yao K., De Luca V., Brisson N. Creation of a metabolic sink for tryptophan alters the phenylpropanoid pathway and the susceptibility of potato to Phytophthora infestans. Plant Cell. 1995;7:1787–1799. doi: 10.2307/3870187. PubMed DOI PMC

Henriquez M.A., Adam L.R., Daayf F. Alteration of secondary metabolites’ profiles in potato leaves in response to weakly and highly aggressive isolates of Phytophthora infestans. Plant Physiol. Biochem. 2012;57:8–14. doi: 10.1016/j.plaphy.2012.04.013. PubMed DOI

Kröner A., Marnet N., Andrivon D., Val F. Nicotiflorin, rutin and chlorogenic acid: Phenylpropanoids involved differently in quantitative resistance of potato tubers to biotrophic and necrotrophic pathogens. Plant Physiol. Biochem. 2012;57:23–31. doi: 10.1016/j.plaphy.2012.05.006. PubMed DOI

Yogendra K.N., Pushpa D., Mosa K.A., Kushalappa A.C., Murphy A., Mosquera T. Quantitative resistance in potato leaves to late blight associated with induced hydroxycinnamic acid amides. Funct. Integr. Genom. 2014;14:285–298. doi: 10.1007/s10142-013-0358-8. PubMed DOI

Fraser-Pitt D.J., Mercer D.K., Smith D., Kowalczuk A., Robertson J., Lovie E., Perenyi P., Cole M., Doumith M., Hill R.L.R., et al. Cysteamine, an endogenous aminothiol, and cystamine, the disulfide product of oxidation, increase Pseudomonas aeruginosa sensitivity to reactive oxygen and nitrogen species and potentiate therapeutic antibiotics against bacterial infection. Infect. Immun. 2018;86:e00947-17. doi: 10.1128/IAI.00947-17. PubMed DOI PMC

Brus-Szkalej M., Andersen C.B., Vetukuri R.R., Grenville-Briggs L.J. A family of cell wall transglutaminases is essential for appressorium development and pathogenicity in Phytophthora infestans. Biorxiv. 2021 doi: 10.1101/2021.11.23.469665. DOI

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Tucker Hallmark H., Černý M., Brzobohatý B., Rashotte A.M.A.M., Hallmark H.T., Černý M., Brzobohatý B., Rashotte A.M.A.M. trans-Zeatin-N-glucosides have biological activity in Arabidopsis thaliana. PLoS ONE. 2020;15:e0232762. doi: 10.1371/journal.pone.0232762. PubMed DOI PMC

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Berka M., Luklová M., Dufková H., Malých V., Novák J., Saiz-Fernández I., Rashotte A.M., Brzobohaty B., Cerny M. Barley root proteome and metabolome in response to cytokinin and abiotic stimuli. Front. Plant Sci. 2020;11:1647. doi: 10.3389/fpls.2020.590337. PubMed DOI PMC

Saiz-Fernández I., Milenković I., Berka M., Černý M., Tomšovský M., Brzobohatý B., Kerchev P. Integrated proteomic and metabolomic profiling of Phytophthora cinnamomi attack on sweet chestnut (Castanea sativa) reveals distinct molecular reprogramming proximal to the infection site and away from it. Int. J. Mol. Sci. 2020;21:8525. doi: 10.3390/ijms21228525. PubMed DOI PMC

Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Divergent Molecular Responses to Heavy Water in Arabidopsis thaliana Compared to Bacteria and Yeast

. 2024 Nov 06 ; 13 (22) : . [epub] 20241106

Xylem Sap Proteome Analysis Provides Insight into Root-Shoot Communication in Response to flg22

. 2024 Jul 20 ; 13 (14) : . [epub] 20240720

Salicylic Acid Treatment and Its Effect on Seed Yield and Seed Molecular Composition of Pisum sativum under Abiotic Stress

. 2023 Mar 13 ; 24 (6) : . [epub] 20230313

Bunyaviruses Affect Growth, Sporulation, and Elicitin Production in Phytophthora cactorum

. 2022 Nov 22 ; 14 (12) : . [epub] 20221122

Molecular Mechanisms Underlying Flax (Linum usitatissimum L.) Tolerance to Cadmium: A Case Study of Proteome and Metabolome of Four Different Flax Genotypes

. 2022 Oct 31 ; 11 (21) : . [epub] 20221031

Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar

. 2022 ; 13 () : 1018272. [epub] 20221013

Interaction With Fungi Promotes the Accumulation of Specific Defense Molecules in Orchid Tubers and May Increase the Value of Tubers for Biotechnological and Medicinal Applications: The Case Study of Interaction Between Dactylorhiza sp. and Tulasnella calospora

. 2022 ; 13 () : 757852. [epub] 20220630

Differences in the Proteomic and Metabolomic Response of Quercus suber and Quercus variabilis During the Early Stages of Phytophthora cinnamomi Infection

. 2022 ; 13 () : 894533. [epub] 20220613

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...