Salicylic Acid Treatment and Its Effect on Seed Yield and Seed Molecular Composition of Pisum sativum under Abiotic Stress
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministry of Education Youth and Sports
CZ.02.2.69/0.0/0.0/19_073/0016670
Ministry of Education Youth and Sports
PubMed
36982529
PubMed Central
PMC10049190
DOI
10.3390/ijms24065454
PII: ijms24065454
Knihovny.cz E-zdroje
- Klíčová slova
- field, heat stress, lipidome, metabolome, phytohormone, proteome, seed development, stress attenuation, yield,
- MeSH
- fyziologický stres MeSH
- hrách setý * metabolismus MeSH
- kyselina salicylová * farmakologie metabolismus MeSH
- rostliny metabolismus MeSH
- semena rostlinná metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina salicylová * MeSH
The reproductive stage of plant development has the most critical impact on yield. Flowering is highly sensitive to abiotic stress, and increasing temperatures and drought harm crop yields. Salicylic acid is a phytohormone that regulates flowering and promotes stress resilience in plants. However, the exact molecular mechanisms and the level of protection are far from understood and seem to be species-specific. Here, the effect of salicylic acid was tested in a field experiment with Pisum sativum exposed to heat stress. Salicylic acid was administered at two different stages of flowering, and its effect on the yield and composition of the harvested seeds was followed. Plants treated with salicylic acid produced larger seed pods, and a significant increase in dry weight was found for the plants with a delayed application of salicylic acid. The analyses of the seed proteome, lipidome, and metabolome did not show any negative impact of salicylic treatment on seed composition. Identified processes that could be responsible for the observed improvement in seed yields included an increase in polyamine biosynthesis, accumulation of storage lipids and lysophosphatidylcholines, a higher abundance of components of chromatin regulation, calmodulin-like protein, and threonine synthase, and indicated a decrease in sensitivity to abscisic acid signaling.
Zobrazit více v PubMed
Sita K., Sehgal A., HanumanthaRao B., Nair R.M., Vara Prasad P.V., Kumar S., Gaur P.M., Farooq M., Siddique K.H.M., Varshney R.K., et al. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front. Plant Sci. 2017;8:1658. doi: 10.3389/fpls.2017.01658. PubMed DOI PMC
Barnabás B., Jäger K., Fehér A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008;31:11–38. doi: 10.1111/j.1365-3040.2007.01727.x. PubMed DOI
Osorio E.E., Davis A.R., Bueckert R.A. High temperatures disturb ovule development in field pea (Pisum sativum) Botany. 2022;100:47–61. doi: 10.1139/cjb-2021-0078. DOI
Mohapatra C., Chand R., Tiwari J.K., Singh A.K. Effect of heat stress during flowering and pod formation in pea (Pisum sativum L.) Physiol. Mol. Biol. Plants. 2020;26:1119–1125. doi: 10.1007/s12298-020-00803-4. PubMed DOI PMC
Lamichaney A., Parihar A.K., Hazra K.K., Dixit G.P., Katiyar P.K., Singh D., Singh A.K., Kumar N., Singh N.P. Untangling the influence of heat stress on crop phenology, seed set, seed weight, and germination in field pea (Pisum sativum L.) Front. Plant Sci. 2021;12:635868. doi: 10.3389/fpls.2021.635868. PubMed DOI PMC
Shi M., Wang C., Wang P., Zhang M., Liao W. Methylation in DNA, histone, and RNA during flowering under stress condition: A review. Plant Sci. 2022;324:111431. doi: 10.1016/j.plantsci.2022.111431. PubMed DOI
Chakraborty A., Chaudhury R., Dutta S., Basak M., Dey S., Schäffner A.R., Das M. Role of metabolites in flower development and discovery of compounds controlling flowering time. Plant Physiol. Biochem. 2022;190:109–118. doi: 10.1016/j.plaphy.2022.09.002. PubMed DOI
Zhao Y., Zhang Q., Li J., Yan X., He H., Gao X., Jia G. High temperature in the root zone repressed flowering in Lilium × formolongi by disturbing the photoperiodic pathway and reconfiguring hormones and primary metabolism. Environ. Exp. Bot. 2021;192:104644. doi: 10.1016/j.envexpbot.2021.104644. DOI
Takeno K. Stress-induced flowering: The third category of flowering response. J. Exp. Bot. 2016;67:4925–4934. doi: 10.1093/jxb/erw272. PubMed DOI
Yamada M., Takeno K. Stress and salicylic acid induce the expression of PnFT2 in the regulation of the stress-induced flowering of Pharbitis nil. J. Plant Physiol. 2014;171:205–212. doi: 10.1016/j.jplph.2013.07.005. PubMed DOI
Banday Z.Z., Nandi A.K. Interconnection between flowering time control and activation of systemic acquired resistance. Front. Plant Sci. 2015;6:174. doi: 10.3389/fpls.2015.00174. PubMed DOI PMC
Alonso-Ramírez A., Rodríguez D., Reyes D., Jiménez J.A., Nicolás G., López-Climent M., Gómez-Cadenas A., Nicolás C. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol. 2009;150:1335–1344. doi: 10.1104/pp.109.139352. PubMed DOI PMC
Lin K.-H., Huang S.-B., Wu C.-W., Chang Y.-S. Effects of salicylic acid and calcium chloride on heat tolerance of Poinsettia. HortScience. 2019;54:499–504. doi: 10.21273/HORTSCI13566-18. DOI
Wassie M., Zhang W., Zhang Q., Ji K., Cao L., Chen L. Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.) Ecotoxicol. Environ. Saf. 2020;191:110206. doi: 10.1016/j.ecoenv.2020.110206. PubMed DOI
Fan Y., Lv Z., Li Y., Qin B., Song Q., Ma L., Wu Q., Zhang W., Ma S., Ma C., et al. Salicylic acid reduces wheat yield loss caused by high temperature stress by enhancing the photosynthetic performance of the flag leaves. Agronomy. 2022;12:1386. doi: 10.3390/agronomy12061386. DOI
Szalai G., Horgosi S., Soós V., Majláth I., Balázs E., Janda T. Salicylic acid treatment of pea seeds induces its de novo synthesis. J. Plant Physiol. 2011;168:213–219. doi: 10.1016/j.jplph.2010.07.029. PubMed DOI
Meitzel T., Radchuk R., McAdam E.L., Thormählen I., Feil R., Munz E., Hilo A., Geigenberger P., Ross J.J., Lunn J.E., et al. Trehalose 6-phosphate promotes seed filling by activating auxin biosynthesis. New Phytol. 2021;229:1553–1565. doi: 10.1111/nph.16956. PubMed DOI
Hartmann M., Zeier J. l-lysine metabolism to N-hydroxypipecolic acid: An integral immune-activating pathway in plants. Plant J. 2018;96:5–21. doi: 10.1111/tpj.14037. PubMed DOI
Bhaskara G.B., Nguyen T.T., Verslues P.E. Unique drought resistance functions of the highly ABA-induced clade a protein phosphatase 2cs. Plant Physiol. 2012;160:379–395. doi: 10.1104/pp.112.202408. PubMed DOI PMC
Xi W., Liu C., Hou X., Yu H. MOTHER OF FT and TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell. 2010;22:1733–1748. doi: 10.1105/tpc.109.073072. PubMed DOI PMC
Chowdhury Z., Mohanty D., Giri M.K., Venables B.J., Chaturvedi R., Chao A., Petros R.A., Shah J. Dehydroabietinal promotes flowering time and plant defense in Arabidopsis via the autonomous pathway genes FLOWERING LOCUS D, FVE, and RELATIVE OF EARLY FLOWERING 6. J. Exp. Bot. 2020;71:4903–4913. doi: 10.1093/jxb/eraa232. PubMed DOI
Chen T., Cui P., Chen H., Ali S., Zhang S., Xiong L. A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis. PLoS Genet. 2013;9:e1003875. doi: 10.1371/journal.pgen.1003875. PubMed DOI PMC
Kim Y.-O., Kim J.S., Kang H. Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J. 2005;42:890–900. doi: 10.1111/j.1365-313X.2005.02420.x. PubMed DOI
Zhang H., Ransom C., Ludwig P., van Nocker S. Genetic analysis of early flowering mutants in arabidopsis defines a class of pleiotropic developmental regulator required for expression of the flowering-time switch flowering locus C. Genetics. 2003;164:347–358. doi: 10.1093/genetics/164.1.347. PubMed DOI PMC
Murphy A.M., Otto B., Brearley C.A., Carr J.P., Hanke D.E. A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J. 2008;56:638–652. doi: 10.1111/j.1365-313X.2008.03629.x. PubMed DOI
Černý M., Novák J., Habánová H., Cerna H., Brzobohatý B. Role of the proteome in phytohormonal signaling. Biochim. Biophys. Acta-Proteins Proteom. 2016;1864:1003–1015. doi: 10.1016/j.bbapap.2015.12.008. PubMed DOI
Zhang C.X., Feng B.H., Chen T.T., Zhang X.F., Tao L.X., Fu G.F. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regul. 2017;83:313–323. doi: 10.1007/s10725-017-0296-x. DOI
Liu H.-T., Huang W.-D., Pan Q.-H., Weng F.-H., Zhan J.-C., Liu Y., Wan S.-B., Liu Y.-Y. Contributions of PIP2-specific-phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves. J. Plant Physiol. 2006;163:405–416. doi: 10.1016/j.jplph.2005.04.027. PubMed DOI
Cingoz G.S., Gurel E. Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Ivanina. Plant Physiol. Biochem. 2016;105:145–149. doi: 10.1016/j.plaphy.2016.04.023. PubMed DOI
Parthasarathy A., Savka M.A., Hudson A.O. The Synthesis and Role of β-Alanine in Plants. Front. Plant Sci. 2019;10:921. doi: 10.3389/fpls.2019.00921. PubMed DOI PMC
Latrasse D., Germann S., Houba-Hérin N., Dubois E., Bui-Prodhomme D., Hourcade D., Juul-Jensen T., Le Roux C., Majira A., Simoncello N., et al. Control of flowering and cell fate by LIF2, an RNA binding partner of the polycomb complex component LHP1. PLoS ONE. 2011;6:e16592. doi: 10.1371/journal.pone.0016592. PubMed DOI PMC
Le Roux C., Del Prete S., Boutet-Mercey S., Perreau F., Balagué C., Roby D., Fagard M., Gaudin V. The hnRNP-Q protein LIF2 participates in the plant immune response. PLoS ONE. 2014;9:e99343. doi: 10.1371/journal.pone.0099343. PubMed DOI PMC
Joshi V., Joung J.-G., Fei Z., Jander G. Interdependence of threonine, methionine and isoleucine metabolism in plants: Accumulation and transcriptional regulation under abiotic stress. Amino Acids. 2010;39:933–947. doi: 10.1007/s00726-010-0505-7. PubMed DOI
Sechet J., Marion-Poll A., North H. Emerging Functions for cell wall polysaccharides accumulated during eudicot seed development. Plants. 2018;7:81. doi: 10.3390/plants7040081. PubMed DOI PMC
Dufková H., Berka M., Psota V., Brzobohatý B., Černý M. Environmental impacts on barley grain composition and longevity. J. Exp. Bot. 2023:erac498. doi: 10.1093/jxb/erac498. PubMed DOI
Song C.-P., Galbraith D.W. AtSAP18, An orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol. Biol. 2006;60:241–257. doi: 10.1007/s11103-005-3880-9. PubMed DOI
Du L., Ali G.S., Simons K.A., Hou J., Yang T., Reddy A.S.N., Poovaiah B.W. Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature. 2009;457:1154–1158. doi: 10.1038/nature07612. PubMed DOI
Virdi A.S., Singh S., Singh P. Abiotic stress responses in plants: Roles of calmodulin-regulated proteins. Front. Plant Sci. 2015;6:809. doi: 10.3389/fpls.2015.00809. PubMed DOI PMC
Raina M., Kisku A.V., Joon S., Kumar S., Kumar D. Calcium Transport Elements in Plants. Elsevier; Amsterdam, The Netherlands: 2021. Calmodulin and calmodulin-like Ca2+ binding proteins as molecular players of abiotic stress response in plants; pp. 231–248.
Donahue J.L., Alford S.R., Torabinejad J., Kerwin R.E., Nourbakhsh A., Ray W.K., Hernick M., Huang X., Lyons B.M., Hein P.P., et al. The Arabidopsis thaliana myo- Inositol 1-Phosphate Synthase 1 gene is required for myo -inositol synthesis and suppression of cell death. Plant Cell. 2010;22:888–903. doi: 10.1105/tpc.109.071779. PubMed DOI PMC
Liang Y., Huang Y., Liu C., Chen K., Li M. Functions and interaction of plant lipid signaling under abiotic stresses. Plant Biol. 2023 doi: 10.1111/plb.13507. PubMed DOI
Zienkiewicz K., Zienkiewicz A. Degradation of lipid droplets in plants and algae-right time, many paths, one goal. Front. Plant Sci. 2020;11:579019. doi: 10.3389/fpls.2020.579019. PubMed DOI PMC
Thürmer M., Gollowitzer A., Pein H., Neukirch K., Gelmez E., Waltl L., Wielsch N., Winkler R., Löser K., Grander J., et al. PI(18:1/18:1) is a SCD1-derived lipokine that limits stress signaling. Nat. Commun. 2022;13:2982. doi: 10.1038/s41467-022-30374-9. PubMed DOI PMC
Hallmark H.T., Černý M., Brzobohatý B., Rashotte A.M.A.M. trans-Zeatin-N-glucosides have biological activity in Arabidopsis thaliana. PLoS ONE. 2020;15:e0232762. doi: 10.1371/journal.pone.0232762. PubMed DOI PMC
Dufková H., Berka M., Luklová M., Rashotte A.M., Brzobohatý B., Černý M. Eggplant germination is promoted by hydrogen peroxide and temperature in an independent but overlapping manner. Molecules. 2019;24:4270. doi: 10.3390/molecules24234270. PubMed DOI PMC
Luklová M., Novák J., Kopecká R., Kameniarová M., Gibasová V., Brzobohatý B., Černý M. Phytochromes and their role in diurnal variations of ROS metabolism and plant proteome. Int. J. Mol. Sci. 2022;23:14134. doi: 10.3390/ijms232214134. PubMed DOI PMC
Kreplak J., Madoui M.-A., Cápal P., Novák P., Labadie K., Aubert G., Bayer P.E., Gali K.K., Syme R.A., Main D., et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019;51:1411–1422. doi: 10.1038/s41588-019-0480-1. PubMed DOI
Dorfer V., Pichler P., Stranzl T., Stadlmann J., Taus T., Winkler S., Mechtler K. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 2014;13:3679–3684. doi: 10.1021/pr500202e. PubMed DOI PMC
Berka M., Luklová M., Dufková H., Berková V., Novák J., Saiz-Fernández I., Rashotte A.M., Brzobohaty B., Cerny M. Barley root proteome and metabolome in response to cytokinin and abiotic stimuli. Front. Plant Sci. 2020;11:590337. doi: 10.3389/fpls.2020.590337. PubMed DOI PMC
Berková V., Berka M., Griga M., Kopecká R., Prokopová M., Luklová M., Horáček J., Smýkalová I., Čičmanec P., Novák J., et al. Molecular mechanisms underlying flax (Linum usitatissimum L.) tolerance to cadmium: A case study of proteome and metabolome of four different flax genotypes. Plants. 2022;11:2931. doi: 10.3390/plants11212931. PubMed DOI PMC
Hampejsová R., Berka M., Berková V., Jersáková J., Domkářová J., von Rundstedt F., Frary A., Saiz-Fernández I., Brzobohatý B., Černý M. Interaction with fungi promotes the accumulation of specific defense molecules in orchid tubers and may increase the value of tubers for biotechnological and medicinal applications: The case study of interaction between Dactylorhiza sp. and Tulasnella calospora. Front. Plant Sci. 2022;13:757852. doi: 10.3389/fpls.2022.757852. PubMed DOI PMC
Pino L.K., Searle B.C., Bollinger J.G., Nunn B., MacLean B., MacCoss M.J. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 2020;39:229–244. doi: 10.1002/mas.21540. PubMed DOI PMC
Dufková H., Berka M., Greplová M., Shejbalová Š., Hampejsová R., Luklová M., Domkářová J., Novák J., Kopačka V., Brzobohatý B., et al. The omics hunt for novel molecular markers of resistance to Phytophthora infestans. Plants. 2022;11:61. doi: 10.3390/plants11010061. PubMed DOI PMC
Černý M., Berka M., Dvořák M., Milenković I., Saiz-Fernández I., Brzobohatý B., Ďurkovič J. Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar. Front. Plant Sci. 2022;13:1018272. doi: 10.3389/fpls.2022.1018272. PubMed DOI PMC
Pang Z., Chong J., Zhou G., De Lima Morais D.A., Chang L., Barrette M., Gauthier C., Jacques P.É., Li S., Xia J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W396. doi: 10.1093/nar/gkab382. PubMed DOI PMC
Liebermeister W., Noor E., Flamholz A., Davidi D., Bernhardt J., Milo R. Visual account of protein investment in cellular functions. Proc. Natl. Acad. Sci. USA. 2014;111:8488–8493. doi: 10.1073/pnas.1314810111. PubMed DOI PMC
Perez-Riverol Y., Bai J., Bandla C., Hewapathirana S., García-Seisdedos D., Kamatchinathan S., Kundu D., Prakash A., Frericks-Zipper A., Eisenacher M., et al. The PRIDE database resources in 2022: A Hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC
Xylem Sap Proteome Analysis Provides Insight into Root-Shoot Communication in Response to flg22