Eggplant Germination is Promoted by Hydrogen Peroxide and Temperature in an Independent but Overlapping Manner

. 2019 Nov 23 ; 24 (23) : . [epub] 20191123

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31771170

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.2.69/0.0/0.0/16_027/0007953 Ministerstvo Školství, Mládeže a Tělovýchovy
AF-IGA2019-IP035 Mendelova Univerzita v Brně

Hydrogen peroxide promotes seed germination, but the molecular mechanisms underlying this process are unclear. This study presents the results of eggplant (Solanum melongena) germination analyses conducted at two different temperatures and follows the effect of hydrogen peroxide treatment on seed germination and the seed proteome. Hydrogen peroxide was found to promote eggplant germination in a way not dissimilar to that of increased temperature stimuli. LC-MS profiling detected 729 protein families, 77 of which responded to a temperature increase or hydrogen peroxide treatment. These differentially abundant proteins were found to be involved in a number of processes, including protein and amino acid metabolism, carbohydrate metabolism, and the glyoxylate cycle. There was a very low overlap between hydrogen peroxide and temperature-responsive proteins, highlighting the differences behind the seemingly similar outcomes. Furthermore, the observed changes from the seed proteome indicate that hydrogen peroxide treatment diminished the seed endogenous hydrogen peroxide pool and that a part of manifested positive hydrogen peroxide effect might be related to altered sensitivity to abscisic acid.

Zobrazit více v PubMed

Wojtyla Ł., Lechowska K., Kubala S., Garnczarska M. Different Modes of Hydrogen Peroxide Action During Seed Germination. Front. Plant Sci. 2016;7:66. doi: 10.3389/fpls.2016.00066. PubMed DOI PMC

Waszczak C., Carmody M., Kangasjärvi J. Reactive Oxygen Species in Plant Signaling. Annu. Rev. Plant Biol. 2018;69:209–236. doi: 10.1146/annurev-arplant-042817-040322. PubMed DOI

Černý M., Habánová H., Berka M., Luklová M., Brzobohatý B. Hydrogen peroxide: Its role in plant biology and crosstalk with signaling networks. Int. J. Mol. Sci. 2018;19:2812. doi: 10.3390/ijms19092812. PubMed DOI PMC

Oracz K., Karpiński S. Phytohormones Signaling Pathways and ROS Involvement in Seed Germination. Front. Plant Sci. 2016;7:864. doi: 10.3389/fpls.2016.00864. PubMed DOI PMC

Kai K., Kasa S., Sakamoto M., Aoki N., Watabe G., Yuasa T., Iwaya-Inoue M., Ishibashi Y. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination. Plant Signal. Behav. 2016;11:e1180492. doi: 10.1080/15592324.2016.1180492. PubMed DOI PMC

Ishibashi Y., Tawaratsumida T., Kondo K., Kasa S., Sakamoto M., Aoki N., Zheng S.-H., Yuasa T., Iwaya-Inoue M. Reactive Oxygen Species Are Involved in Gibberellin/Abscisic Acid Signaling in Barley Aleurone Cells. Plant Physiol. 2012;158:1705–1714. doi: 10.1104/pp.111.192740. PubMed DOI PMC

Ishibashi Y., Aoki N., Kasa S., Sakamoto M., Kai K., Tomokiyo R., Watabe G., Yuasa T., Iwaya-Inoue M. The Interrelationship between Abscisic Acid and Reactive Oxygen Species Plays a Key Role in Barley Seed Dormancy and Germination. Front. Plant Sci. 2017;8:275. doi: 10.3389/fpls.2017.00275. PubMed DOI PMC

Zhang Y., Chen B., Xu Z., Shi Z., Chen S., Huang X., Chen J., Wang X. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. J. Exp. Bot. 2014;65:3189–3200. doi: 10.1093/jxb/eru167. PubMed DOI PMC

Ullio L. Eggplant growing. [(accessed on 1 November 2019)];Agfacts. 2003 :1–4. H8.1.29. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0004/126292/Eggplant-Growing-Agfact-H8.1.29.pdf.

Chen N.C., Li H.M. Training Workshop on Vegetable Cultivation and Seed Production. AVRDC World Vegetable Center; Shanhua, Taiwan: 1996. Cultivation and breeding of eggplant.

Barchi L., Pietrella M., Venturini L., Minio A., Toppino L., Acquadro A., Andolfo G., Aprea G., Avanzato C., Bassolino L., et al. A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-47985-w. PubMed DOI PMC

Baldrianová J., Černý M., Novák J., Jedelský P.L., Divíšková E., Brzobohatý B. Arabidopsis proteome responses to the smoke-derived growth regulator karrikin. J. Proteomics. 2015;120:7–20. doi: 10.1016/j.jprot.2015.02.011. PubMed DOI

Hooper C.M., Castleden I.R., Tanz S.K., Aryamanesh N., Millar A.H. SUBA4: The interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res. 2017;45:D1064–D1074. doi: 10.1093/nar/gkw1041. PubMed DOI PMC

Yang Z., Mhamdi A., Noctor G. Analysis of catalase mutants underscores the essential role of CATALASE2 for plant growth and day length-dependent oxidative signaling. Plant Cell Environ. 2019;42:688–700. doi: 10.1111/pce.13453. PubMed DOI

Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. Von STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC

Zhang Y., Liu H., Shen S., Zhang X. Improvement of eggplant seed germination and seedling emergence at low temperature by seed priming with incorporation SA into KNO3 solution. Front. Agric. China. 2011;5:534–537. doi: 10.1007/s11703-011-1124-0. DOI

Zdravkovic J., Ristic N., Girek Z., Pavlovic S., Pavlovic N., Pavlovic R., Zdravkovic M. Understanding and overcoming seed dormancy in eggplant (Solanum melongena L.) breeding lines. SABRAO J. Breed. Genet. 2013;45:211–220.

Neto F.J.D., Dalanhol S.J., Machry M., Junior A.P., Rodrigues J.D., Ono E.O. Effects of plant growth regulators on eggplant seed germination and seedling growth. Aust. J. Crop Sci. 2017;11:1277–1282. doi: 10.21475/ajcs.17.11.10.pne542. DOI

Ali M., Hayat S., Ahmad H., Ghani M.I., Amin B., Atif M.J., Cheng Z. Priming of Solanum melongena L. seeds enhances germination, alters antioxidant enzymes, modulates ROS, and improves early seedling growth: Indicating aqueous garlic extract as seed-priming bio-stimulant for eggplant production. Appl. Sci. 2019;9:2203. doi: 10.3390/app9112203. DOI

Tank J., Dhamangaonkar B., Ukale D.U., Cukkemane N., Cukkemane A.A. Biochemical and Microbiological Analysis of Different Organic Manures: Their Effect on Germination of Coriandrum sativum (Cilantro) and Solanum melongena (Eggplant) J. Bioprocess. Biotech. 2017;7 doi: 10.4172/2155-9821.1000295. DOI

Diao Q., Song Y., Shi D., Qi H. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings. Front. Plant Sci. 2017;8:203. doi: 10.3389/fpls.2017.00203. PubMed DOI PMC

Sun M., Jiang F., Cen B., Wen J., Zhou Y., Wu Z. Respiratory burst oxidase homologue-dependent H2O2 and chloroplast H2O2 are essential for the maintenance of acquired thermotolerance during recovery after acclimation. Plant Cell Environ. 2018;41:2373–2389. doi: 10.1111/pce.13351. PubMed DOI

Carpenter C.D., Kreps J.A., Simon A.E. Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 1994;104:1015–1025. doi: 10.1104/pp.104.3.1015. PubMed DOI PMC

Guo Y., Xiong L., Ishitani M., Zhu J.K. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proc. Natl. Acad. Sci. USA. 2002;99:7786–7791. doi: 10.1073/pnas.112040099. PubMed DOI PMC

Wilkins O., Bräutigam K., Campbell M.M. Time of day shapes Arabidopsis drought transcriptomes. Plant J. 2010;63:715–727. doi: 10.1111/j.1365-313X.2010.04274.x. PubMed DOI

He H., Yan J., Yu X., Liang Y., Fang L., Scheller H.V., Zhang A. The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2017;491:834–839. doi: 10.1016/j.bbrc.2017.05.131. PubMed DOI

Schmidt F., Marnef A., Cheung M.K., Wilson I., Hancock J., Staiger D., Ladomery M. A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8. Mol. Biol. Rep. 2010;37:839–845. doi: 10.1007/s11033-009-9636-x. PubMed DOI

Fukamatsu Y., Yabe N., Hasunuma K. Arabidopsis NDK1 is a Component of ROS Signaling by Interacting with Three Catalases. Plant Cell Physiol. 2003;44:982–989. doi: 10.1093/pcp/pcg140. PubMed DOI

Yu J., Jin X., Sun X., Gao T., Chen X., She Y., Jiang T., Chen S., Dai S. Hydrogen peroxide response in leaves of poplar (populus simonii × populus nigra) revealed from physiological and proteomic analyses. Int. J. Mol. Sci. 2017;18:2085. doi: 10.3390/ijms18102085. PubMed DOI PMC

Khan A., Ali M., Khattak A.M., Gai W.X., Zhang H.X., Wei A.M., Gong Z.H. Gong Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. Int. J. Mol. Sci. 2019;20:5321. doi: 10.3390/ijms20215321. PubMed DOI PMC

Klepikova A.V., Logacheva M.D., Dmitriev S.E., Penin A.A. RNA-seq analysis of an apical meristem time series reveals a critical point in Arabidopsis thaliana flower initiation. BMC Genomics. 2015;16 doi: 10.1186/s12864-015-1688-9. PubMed DOI PMC

Inzé A., Vanderauwera S., Hoeberichts F.A., Vandorpe M., van Gaever T., van Breusegem F. A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant Cell Environ. 2012;35:308–320. doi: 10.1111/j.1365-3040.2011.02323.x. PubMed DOI

Kim D.H., Xu Z.Y., Hwang I. AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling. Plant Cell Rep. 2013;32:1953–1963. doi: 10.1007/s00299-013-1506-2. PubMed DOI

Arc E., Sechet J., Corbineau F., Rajjou L., Marion-Poll A. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci. 2013;4:63. doi: 10.3389/fpls.2013.00063. PubMed DOI PMC

Černý M., Novák J., Habánová H., Cerna H., Brzobohatý B. Role of the proteome in phytohormonal signaling. Biochim. Biophys. Acta Proteins Proteomics. 2016;1864:1003–1015. doi: 10.1016/j.bbapap.2015.12.008. PubMed DOI

Li B., Takahashi D., Kawamura Y., Uemura M. Comparison of plasma membrane proteomic changes of Arabidopsis suspension-cultured cells (T87 Line) after cold and ABA treatment in association with freezing tolerance development. Plant Cell Physiol. 2012;53:543–554. doi: 10.1093/pcp/pcs010. PubMed DOI

Komatsu S., Han C., Nanjo Y., Altaf-Un-Nahar M., Wang K., He D., Yang P. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J. Proteome Res. 2013;12:4769–4784. doi: 10.1021/pr4001898. PubMed DOI

Böhmer M., Schroeder J.I. Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant J. 2011;67:105–118. doi: 10.1111/j.1365-313X.2011.04579.x. PubMed DOI PMC

Zhu M., Zhu N., Song W., Harmon A.C., Assmann S.M., Chen S. Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells. Plant J. 2014;78:491–515. doi: 10.1111/tpj.12490. PubMed DOI PMC

Černý M., Kuklová A., Hoehenwarter W., Fragner L., Novák O., Rotková G., Jedelský P.L.P.L., Žáková K.K., Šmehilová M., Strnad M., et al. Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. J. Exp. Bot. 2013;64:4193–4206. doi: 10.1093/jxb/ert227. PubMed DOI PMC

Cerna H., Černý M., Habánová H., Šafářová D., Abushamsiya K., Navrátil M., Brzobohatý B. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV) J. Proteomics. 2017;153:78–88. doi: 10.1016/j.jprot.2016.05.018. PubMed DOI

Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., Widmayer P., Gruissem W., Zimmermann P. Genevestigator V3: A Reference Expression Database for the Meta-Analysis of Transcriptomes. Adv. Bioinformatics. 2008;2008:1–5. doi: 10.1155/2008/420747. PubMed DOI PMC

Nolte H., MacVicar T.D., Tellkamp F., Krüger M. Instant Clue: A Software Suite for Interactive Data Visualization and Analysis. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-31154-6. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Divergent Molecular Responses to Heavy Water in Arabidopsis thaliana Compared to Bacteria and Yeast

. 2024 Nov 06 ; 13 (22) : . [epub] 20241106

Salicylic Acid Treatment and Its Effect on Seed Yield and Seed Molecular Composition of Pisum sativum under Abiotic Stress

. 2023 Mar 13 ; 24 (6) : . [epub] 20230313

Phytochromes and Their Role in Diurnal Variations of ROS Metabolism and Plant Proteome

. 2022 Nov 16 ; 23 (22) : . [epub] 20221116

Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar

. 2022 ; 13 () : 1018272. [epub] 20221013

Split-root systems: detailed methodology, alternative applications, and implications at leaf proteome level

. 2021 Jan 09 ; 17 (1) : 7. [epub] 20210109

Peptide-Based Identification of Phytophthora Isolates and Phytophthora Detection in Planta

. 2020 Dec 12 ; 21 (24) : . [epub] 20201212

Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli

. 2020 ; 11 () : 590337. [epub] 20201028

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace