Eggplant Germination is Promoted by Hydrogen Peroxide and Temperature in an Independent but Overlapping Manner
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.2.69/0.0/0.0/16_027/0007953
Ministerstvo Školství, Mládeže a Tělovýchovy
AF-IGA2019-IP035
Mendelova Univerzita v Brně
PubMed
31771170
PubMed Central
PMC6930571
DOI
10.3390/molecules24234270
PII: molecules24234270
Knihovny.cz E-zdroje
- Klíčová slova
- eggplant, germination, hydrogen peroxide, proteomics, seed, temperature,
- MeSH
- chromatografie kapalinová MeSH
- fyziologický stres účinky léků MeSH
- hmotnostní spektrometrie MeSH
- klíčení účinky léků MeSH
- metabolismus sacharidů účinky léků MeSH
- peroxid vodíku farmakologie MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- rostlinné proteiny metabolismus MeSH
- Solanum melongena účinky léků fyziologie MeSH
- teplota MeSH
- vývojová regulace genové exprese účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peroxid vodíku MeSH
- rostlinné proteiny MeSH
Hydrogen peroxide promotes seed germination, but the molecular mechanisms underlying this process are unclear. This study presents the results of eggplant (Solanum melongena) germination analyses conducted at two different temperatures and follows the effect of hydrogen peroxide treatment on seed germination and the seed proteome. Hydrogen peroxide was found to promote eggplant germination in a way not dissimilar to that of increased temperature stimuli. LC-MS profiling detected 729 protein families, 77 of which responded to a temperature increase or hydrogen peroxide treatment. These differentially abundant proteins were found to be involved in a number of processes, including protein and amino acid metabolism, carbohydrate metabolism, and the glyoxylate cycle. There was a very low overlap between hydrogen peroxide and temperature-responsive proteins, highlighting the differences behind the seemingly similar outcomes. Furthermore, the observed changes from the seed proteome indicate that hydrogen peroxide treatment diminished the seed endogenous hydrogen peroxide pool and that a part of manifested positive hydrogen peroxide effect might be related to altered sensitivity to abscisic acid.
Institute of Biophysics AS CR 613 00 Brno Czech Republic
Rouse Life Sciences Department of Biological Sciences Auburn University Auburn AL 36849 USA
Zobrazit více v PubMed
Wojtyla Ł., Lechowska K., Kubala S., Garnczarska M. Different Modes of Hydrogen Peroxide Action During Seed Germination. Front. Plant Sci. 2016;7:66. doi: 10.3389/fpls.2016.00066. PubMed DOI PMC
Waszczak C., Carmody M., Kangasjärvi J. Reactive Oxygen Species in Plant Signaling. Annu. Rev. Plant Biol. 2018;69:209–236. doi: 10.1146/annurev-arplant-042817-040322. PubMed DOI
Černý M., Habánová H., Berka M., Luklová M., Brzobohatý B. Hydrogen peroxide: Its role in plant biology and crosstalk with signaling networks. Int. J. Mol. Sci. 2018;19:2812. doi: 10.3390/ijms19092812. PubMed DOI PMC
Oracz K., Karpiński S. Phytohormones Signaling Pathways and ROS Involvement in Seed Germination. Front. Plant Sci. 2016;7:864. doi: 10.3389/fpls.2016.00864. PubMed DOI PMC
Kai K., Kasa S., Sakamoto M., Aoki N., Watabe G., Yuasa T., Iwaya-Inoue M., Ishibashi Y. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination. Plant Signal. Behav. 2016;11:e1180492. doi: 10.1080/15592324.2016.1180492. PubMed DOI PMC
Ishibashi Y., Tawaratsumida T., Kondo K., Kasa S., Sakamoto M., Aoki N., Zheng S.-H., Yuasa T., Iwaya-Inoue M. Reactive Oxygen Species Are Involved in Gibberellin/Abscisic Acid Signaling in Barley Aleurone Cells. Plant Physiol. 2012;158:1705–1714. doi: 10.1104/pp.111.192740. PubMed DOI PMC
Ishibashi Y., Aoki N., Kasa S., Sakamoto M., Kai K., Tomokiyo R., Watabe G., Yuasa T., Iwaya-Inoue M. The Interrelationship between Abscisic Acid and Reactive Oxygen Species Plays a Key Role in Barley Seed Dormancy and Germination. Front. Plant Sci. 2017;8:275. doi: 10.3389/fpls.2017.00275. PubMed DOI PMC
Zhang Y., Chen B., Xu Z., Shi Z., Chen S., Huang X., Chen J., Wang X. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. J. Exp. Bot. 2014;65:3189–3200. doi: 10.1093/jxb/eru167. PubMed DOI PMC
Ullio L. Eggplant growing. [(accessed on 1 November 2019)];Agfacts. 2003 :1–4. H8.1.29. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0004/126292/Eggplant-Growing-Agfact-H8.1.29.pdf.
Chen N.C., Li H.M. Training Workshop on Vegetable Cultivation and Seed Production. AVRDC World Vegetable Center; Shanhua, Taiwan: 1996. Cultivation and breeding of eggplant.
Barchi L., Pietrella M., Venturini L., Minio A., Toppino L., Acquadro A., Andolfo G., Aprea G., Avanzato C., Bassolino L., et al. A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-47985-w. PubMed DOI PMC
Baldrianová J., Černý M., Novák J., Jedelský P.L., Divíšková E., Brzobohatý B. Arabidopsis proteome responses to the smoke-derived growth regulator karrikin. J. Proteomics. 2015;120:7–20. doi: 10.1016/j.jprot.2015.02.011. PubMed DOI
Hooper C.M., Castleden I.R., Tanz S.K., Aryamanesh N., Millar A.H. SUBA4: The interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res. 2017;45:D1064–D1074. doi: 10.1093/nar/gkw1041. PubMed DOI PMC
Yang Z., Mhamdi A., Noctor G. Analysis of catalase mutants underscores the essential role of CATALASE2 for plant growth and day length-dependent oxidative signaling. Plant Cell Environ. 2019;42:688–700. doi: 10.1111/pce.13453. PubMed DOI
Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. Von STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC
Zhang Y., Liu H., Shen S., Zhang X. Improvement of eggplant seed germination and seedling emergence at low temperature by seed priming with incorporation SA into KNO3 solution. Front. Agric. China. 2011;5:534–537. doi: 10.1007/s11703-011-1124-0. DOI
Zdravkovic J., Ristic N., Girek Z., Pavlovic S., Pavlovic N., Pavlovic R., Zdravkovic M. Understanding and overcoming seed dormancy in eggplant (Solanum melongena L.) breeding lines. SABRAO J. Breed. Genet. 2013;45:211–220.
Neto F.J.D., Dalanhol S.J., Machry M., Junior A.P., Rodrigues J.D., Ono E.O. Effects of plant growth regulators on eggplant seed germination and seedling growth. Aust. J. Crop Sci. 2017;11:1277–1282. doi: 10.21475/ajcs.17.11.10.pne542. DOI
Ali M., Hayat S., Ahmad H., Ghani M.I., Amin B., Atif M.J., Cheng Z. Priming of Solanum melongena L. seeds enhances germination, alters antioxidant enzymes, modulates ROS, and improves early seedling growth: Indicating aqueous garlic extract as seed-priming bio-stimulant for eggplant production. Appl. Sci. 2019;9:2203. doi: 10.3390/app9112203. DOI
Tank J., Dhamangaonkar B., Ukale D.U., Cukkemane N., Cukkemane A.A. Biochemical and Microbiological Analysis of Different Organic Manures: Their Effect on Germination of Coriandrum sativum (Cilantro) and Solanum melongena (Eggplant) J. Bioprocess. Biotech. 2017;7 doi: 10.4172/2155-9821.1000295. DOI
Diao Q., Song Y., Shi D., Qi H. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings. Front. Plant Sci. 2017;8:203. doi: 10.3389/fpls.2017.00203. PubMed DOI PMC
Sun M., Jiang F., Cen B., Wen J., Zhou Y., Wu Z. Respiratory burst oxidase homologue-dependent H2O2 and chloroplast H2O2 are essential for the maintenance of acquired thermotolerance during recovery after acclimation. Plant Cell Environ. 2018;41:2373–2389. doi: 10.1111/pce.13351. PubMed DOI
Carpenter C.D., Kreps J.A., Simon A.E. Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 1994;104:1015–1025. doi: 10.1104/pp.104.3.1015. PubMed DOI PMC
Guo Y., Xiong L., Ishitani M., Zhu J.K. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proc. Natl. Acad. Sci. USA. 2002;99:7786–7791. doi: 10.1073/pnas.112040099. PubMed DOI PMC
Wilkins O., Bräutigam K., Campbell M.M. Time of day shapes Arabidopsis drought transcriptomes. Plant J. 2010;63:715–727. doi: 10.1111/j.1365-313X.2010.04274.x. PubMed DOI
He H., Yan J., Yu X., Liang Y., Fang L., Scheller H.V., Zhang A. The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2017;491:834–839. doi: 10.1016/j.bbrc.2017.05.131. PubMed DOI
Schmidt F., Marnef A., Cheung M.K., Wilson I., Hancock J., Staiger D., Ladomery M. A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8. Mol. Biol. Rep. 2010;37:839–845. doi: 10.1007/s11033-009-9636-x. PubMed DOI
Fukamatsu Y., Yabe N., Hasunuma K. Arabidopsis NDK1 is a Component of ROS Signaling by Interacting with Three Catalases. Plant Cell Physiol. 2003;44:982–989. doi: 10.1093/pcp/pcg140. PubMed DOI
Yu J., Jin X., Sun X., Gao T., Chen X., She Y., Jiang T., Chen S., Dai S. Hydrogen peroxide response in leaves of poplar (populus simonii × populus nigra) revealed from physiological and proteomic analyses. Int. J. Mol. Sci. 2017;18:2085. doi: 10.3390/ijms18102085. PubMed DOI PMC
Khan A., Ali M., Khattak A.M., Gai W.X., Zhang H.X., Wei A.M., Gong Z.H. Gong Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. Int. J. Mol. Sci. 2019;20:5321. doi: 10.3390/ijms20215321. PubMed DOI PMC
Klepikova A.V., Logacheva M.D., Dmitriev S.E., Penin A.A. RNA-seq analysis of an apical meristem time series reveals a critical point in Arabidopsis thaliana flower initiation. BMC Genomics. 2015;16 doi: 10.1186/s12864-015-1688-9. PubMed DOI PMC
Inzé A., Vanderauwera S., Hoeberichts F.A., Vandorpe M., van Gaever T., van Breusegem F. A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant Cell Environ. 2012;35:308–320. doi: 10.1111/j.1365-3040.2011.02323.x. PubMed DOI
Kim D.H., Xu Z.Y., Hwang I. AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling. Plant Cell Rep. 2013;32:1953–1963. doi: 10.1007/s00299-013-1506-2. PubMed DOI
Arc E., Sechet J., Corbineau F., Rajjou L., Marion-Poll A. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci. 2013;4:63. doi: 10.3389/fpls.2013.00063. PubMed DOI PMC
Černý M., Novák J., Habánová H., Cerna H., Brzobohatý B. Role of the proteome in phytohormonal signaling. Biochim. Biophys. Acta Proteins Proteomics. 2016;1864:1003–1015. doi: 10.1016/j.bbapap.2015.12.008. PubMed DOI
Li B., Takahashi D., Kawamura Y., Uemura M. Comparison of plasma membrane proteomic changes of Arabidopsis suspension-cultured cells (T87 Line) after cold and ABA treatment in association with freezing tolerance development. Plant Cell Physiol. 2012;53:543–554. doi: 10.1093/pcp/pcs010. PubMed DOI
Komatsu S., Han C., Nanjo Y., Altaf-Un-Nahar M., Wang K., He D., Yang P. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J. Proteome Res. 2013;12:4769–4784. doi: 10.1021/pr4001898. PubMed DOI
Böhmer M., Schroeder J.I. Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant J. 2011;67:105–118. doi: 10.1111/j.1365-313X.2011.04579.x. PubMed DOI PMC
Zhu M., Zhu N., Song W., Harmon A.C., Assmann S.M., Chen S. Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells. Plant J. 2014;78:491–515. doi: 10.1111/tpj.12490. PubMed DOI PMC
Černý M., Kuklová A., Hoehenwarter W., Fragner L., Novák O., Rotková G., Jedelský P.L.P.L., Žáková K.K., Šmehilová M., Strnad M., et al. Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. J. Exp. Bot. 2013;64:4193–4206. doi: 10.1093/jxb/ert227. PubMed DOI PMC
Cerna H., Černý M., Habánová H., Šafářová D., Abushamsiya K., Navrátil M., Brzobohatý B. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV) J. Proteomics. 2017;153:78–88. doi: 10.1016/j.jprot.2016.05.018. PubMed DOI
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., Widmayer P., Gruissem W., Zimmermann P. Genevestigator V3: A Reference Expression Database for the Meta-Analysis of Transcriptomes. Adv. Bioinformatics. 2008;2008:1–5. doi: 10.1155/2008/420747. PubMed DOI PMC
Nolte H., MacVicar T.D., Tellkamp F., Krüger M. Instant Clue: A Software Suite for Interactive Data Visualization and Analysis. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-31154-6. PubMed DOI PMC
Divergent Molecular Responses to Heavy Water in Arabidopsis thaliana Compared to Bacteria and Yeast
Phytochromes and Their Role in Diurnal Variations of ROS Metabolism and Plant Proteome
Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar
Peptide-Based Identification of Phytophthora Isolates and Phytophthora Detection in Planta
Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli