Drugs for solid cancer: the productivity crisis prompts a rethink

. 2013 ; 6 () : 767-77. [epub] 20130626

Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid23836990

Despite remarkable progress in cancer-drug discovery, the delivery of novel, safe, and sustainably effective products to the clinic has stalled. Using Src as a model, we examine key steps in drug development. The preclinical evidence on the relationship between Src and solid cancer is in sharp contrast with the modest anticancer effect noted in conventional clinical trials. Here, we consider Src inhibitors as an example of a promising drug class directed to invasion and metastasis and identify roadblocks in translation. We question the assumption that a drug-induced tumor shrinkage in preclinical and clinical studies predicts a successful outcome. Our analysis indicates that the key areas requiring attention are related, and include preclinical models (in vitro and mouse models), meaningful clinical trial end points, and an appreciation of the role of metastasis in morbidity and mortality. Current regulations do not reflect the natural history of the disease, and may be unrelated to the key complications: local invasion, metastasis, and the development of resistance. Alignment of preclinical and clinical studies and regulations based on mechanistic trial end points and platforms may help in overcoming these roadblocks. Viewed kaleidoscopically, most elements necessary and sufficient for a novel translational paradigm are in place.

Zobrazit více v PubMed

DeVita VT, Jr, Rosenberg SA. Two hundred years of cancer research. N Engl J Med. 2012;366(23):2207–2214. PubMed PMC

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. PubMed

Javier RT, Butel JS. The history of tumor virology. Cancer Res. 2008;68(19):7693–7706. PubMed PMC

Scannell JW, Blanckley A, Boldon H, Warrington B. Opinion: diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11(3):191–200. PubMed

Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov. 2011;10(6):428–438. PubMed

Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–715. PubMed

Fernandes M. Judging a cancer drug: Avastin’s story [letter] New York Times. 2011;160(55423):section A.

Brábek J, Fernandes M. Affordable cancer care. Lancet Oncol. 2012;13(1):2–3. PubMed

Kuhn TS. The Structure of Scientific Revolutions: 50th Anniversary Edition. Chicago: University of Chicago Press; 2012.

Sullivan R, Peppercorn J, Sikora K, et al. Delivering affordable cancer care in high-income countries. Lancet Oncol. 2011;12(10):933–980. PubMed

Benowitz S. Provocative questions initiative to fund innovative cancer research. J Natl Cancer Inst. 2012;104(13):966–967. PubMed

Weber GF. Why does cancer therapy lack effective anti-metastasis drugs? Cancer Lett. 2013;328(2):207–211. PubMed

Sleeman JP, Christofori G, Fodde R, et al. Concepts of metastasis in flux: the stromal progression model. Semin Cancer Biol. 2012;22(3):174–186. PubMed

Eckhardt BL, Francis PA, Parker BS, Anderson R. Strategies for the discovery and development of therapies for metastatic breast cancer. Nat Rev Drug Discov. 2012;11(6):479–497. PubMed

Sleeman J, Steeg PS. Cancer metastasis as a therapeutic target. Eur J Cancer. 2010;46(7):177–180. PubMed PMC

Rous P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med. 1911;13(4):397–411. PubMed PMC

Weiss RA, Vogt PK. 100 years of Rous sarcoma virus. J Exp Med. 2011;208(12):2351–2355. PubMed PMC

Stehelin D, Varmus HE, Bishop JM, Vogt PK. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature. 1976;260(5547):170–173. PubMed

Martin GS. The road to Src. Oncogene. 2004;23(48):7910–7917. PubMed

Becsei-Kilborn E. Scientific discovery and scientific reputation: the reception of Peyton Rous’ discovery of the chicken sarcoma virus. J Hist Biol. 2010;43(1):111–157. PubMed

Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci. 2013;126(Pt 2):393–401. PubMed

Zhang S, Yu D. Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. Trends Pharmacol Sci. 2012;33(3):122–128. PubMed PMC

Sirvent A, Benistant C, Roche S. Oncogenic signaling by tyrosine kinases of the SRC family in advanced colorectal cancer. Am J Cancer Res. 2012;2(4):357–371. PubMed PMC

Tsuda M, Tanaka S. Roles for Crk in cancer metastasis and invasion. Genes Cancer. 2012;3(5–6):334–340. PubMed PMC

Elsberger B, Stewart B, Tatarov O, Edwards J. Is Src a viable target for treating solid tumors? Curr Cancer Drug Targets. 2010;10(7):683–694. PubMed

Aleshin A, Finn RS. SRC: a century of science brought to the clinic. Neoplasia. 2010;12(8):599–607. PubMed PMC

Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406. PubMed PMC

Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2010;17(3):320–329. PubMed PMC

Box C, Rogers SJ, Mendiola M, Eccles SA. Tumor-microenvironmental interactions: paths to progression and targets for treatment. Semin Cancer Biol. 2010;20(3):128–138. PubMed

Brábek J, Mierke CT, Rösel D, Veselý P, Fabry B. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Commun Signal. 2010;8:22. PubMed PMC

Loboda A, Nebozhyn MV, Watters JW, et al. EMT is the dominant program in human colon cancer. BMC Med Genomics. 2011;4:9. PubMed PMC

Savagner P. The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol. 2010;21(Suppl 7):S87–S92. PubMed PMC

Roussos ET, Condeelis JS, Patsialou A. Chemotaxis in cancer. Nat Rev Cancer. 2011;11(8):573–587. PubMed PMC

Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration during metastasis. Curr Opin Cell Biol. 2012;24(2):277–283. PubMed PMC

Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer. 2011;11(7):512–522. PubMed PMC

Cukierman E, Bassi DE. Physico-mechanical aspects of extracellular matrix influences on tumorigenic behaviors. Semin Cancer Biol. 2010;20(3):139–145. PubMed PMC

Guck J, Lautenschläger F, Paschke S, Beil M. Critical review: cellular mechanobiology and amoeboid migration. Integr Biol. 2010;2(11–12):575–583. PubMed

Panková K, Rösel D, Novotný M, Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci. 2010;67(1):63–71. PubMed PMC

Kumar S, Weaver VM. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 2009;28(1–2):113–127. PubMed PMC

Mierke CT, Rösel D, Fabry B, Brábek J. Contractile forces in tumor cell migration. Eur J Cell Biol. 2008;87(8–9):669–676. PubMed PMC

Yamaguchi H. Pathological roles of invadopodia in cancer invasion and metastasis. Eur J Cell Biol. 2012;91(11–12):902–907. PubMed

Saltel F, Daubon T, Juin A, et al. Invadosomes: intriguing structures with promise. Eur J Cell Biol. 2011;90(2–3):100–107. PubMed

Tolde O, Rosel D, Vesely P, Folk P, Brábek J. The structure of invadopodia in a complex 3D environment. Eur J Cell Biol. 2010;89(9):674–680. PubMed

Destaing O, Block MR, Planus E, Albiges-Rizo C. Invadosome regulation by adhesion signaling. Curr Opin Cell Biol. 2011;23(5):597–606. PubMed

Wang Y, McNiven MA. Invasive matrix degradation at focal adhesions occurs via protease recruitment by a FAK–p130Cas complex. J Cell Biol. 2012;196(3):375–385. PubMed PMC

Matsui H, Harada I, Sawada Y. Src, p130Cas, and mechanotransduction in cancer cells. Genes Cancer. 2012;3(5–6):394–401. PubMed PMC

Stylli SS, Kaye AH, Lock P. Invadopodia: at the cutting edge of tumour invasion. J Clin Neurosci. 2008;15(7):725–737. PubMed

Eckert MA, Lwin TM, Chang AT, et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell. 2011;19(3):372–386. PubMed PMC

Plé PA, Green TP, Hennequin LF, et al. Discovery of a new class of anilinoquinazoline inhibitors with high affinity and specificity for the tyrosine kinase domain of c-Src. J Med Chem. 2004;47(4):871–887. PubMed

Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004;47(27):6658–6661. PubMed

Hennequin LF, Allen J, Breed J, et al. N-(5-chloro-1,3-benzodioxol-4-yl)-7-(2-(4-methylpiperazin-1-yl)ethoxy.-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J Med Chem. 2006;49(22):6465–6488. PubMed

Boschelli DH, Wu B, Barrios Sosa AC, et al. Synthesis and Src kinase inhibitory activity of 2-phenyl- and 2-thienyl-7-phenylaminothieno[3,2-b]pyridine-6-carbonitriles. J Med Chem. 2005;48(11):3891–3902. PubMed

Jallal H, Valentino ML, Chen G, Boschelli F, Ali S, Rabbani SA. A Src/Abl kinase inhibitor, SKI-606, blocks breast cancer invasion, growth, and metastasis in vitro and in vivo. Cancer Res. 2007;67(4):1580–1588. PubMed

Vultur A, Buettner R, Kowolik C, et al. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol Cancer Ther. 2008;7(5):1185–1194. PubMed PMC

Green TP, Fennell M, Whittaker R, et al. Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530. Mol Oncol. 2009;3(3):248–261. PubMed PMC

Pichot CS, Hartig SM, Xia L, et al. Dasatinib synergizes with doxorubicin to block growth, migration, and invasion of breast cancer cells. Br J Cancer. 2009;101(1):38–47. PubMed PMC

Dong M, Rice L, Lepler S, Pampo C, Siemann DW. Impact of the Src inhibitor Saracatinib on the metastatic phenotype of a fibrosarcoma KHT tumor model. Anticancer Res. 2010;30(11):4405–4413. PubMed

Schweppe RE, Kerege AA, French JD, Sharma V, Grzywa RL, Haugen BR. Inhibition of Src with AZD0530 reveals the Src-focal adhesion kinase complex as a novel therapeutic target in papillary and anaplastic thyroid cancer. J Clin Endocrinol Metab. 2009;94(6):2199–2203. PubMed PMC

Chan CM, Jing X, Pike LA, et al. Targeted inhibition of SRC kinase with dasatinib blocks thyroid cancer growth and metastasis. Clin Cancer Res. 2012;18(13):3580–3591. PubMed PMC

Rabbani SA, Valentino ML, Arakelian AS, Boschelli F. SKI-606 (bosutinib) blocks prostate cancer invasion, growth, and metastasis in vitro and in vivo through regulation of genes involved in cancer growth and skeletal metastasis. Mol Cancer Ther. 2010;9(5):1147–1157. PubMed

Morton JP, Karim SA, Graham K, et al. Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology. 2010;139(1):292–303. PubMed

Ammer AG, Kelley LC, Hayes KE, et al. Saracatinib impairs head and neck squamous cell carcinoma invasion by disrupting invadopodia function. J Cancer Sci Ther. 2009;1(2):52–61. PubMed PMC

Boyce B, Xing L. Src inhibitors in the treatment of metastatic bone disease: rationale and clinical data. Clin Investig (Lond) 2011;1(12):1695–1706. PubMed PMC

Creedon H, Brunton VG. Src kinase inhibitors: promising cancer therapeutics? Crit Rev Oncog. 2012;17(2):145–159. PubMed

Puls LN, Eadens M, Messersmith W. Current status of Src inhibitors in solid tumor malignancies. Oncologist. 2012;16(5):566–578. PubMed PMC

Burchill SA. What do, can, and should we learn from models to evaluate potential anticancer agents? Future Oncol. 2006;2(2):201–211. PubMed

Decaudin D. Primary human tumor xenografted models (‘tumorgrafts’) for good management of patients with cancer. Anticancer Drugs. 2011;22(9):827–841. PubMed

Ocana A, Pandiella A, Siu LL, Tannock IF. Preclinical development of molecular-targeted agents for cancer. Nat Rev Clin Oncol. 2011;8(4):200–209. PubMed

Caponigro G, Sellers WR. Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov. 2011;10(3):179–187. PubMed

Teicher BA. In vivo/ex vivo and in situ assays used in cancer research: a brief review. Toxicol Pathol. 2009;37(1):114–122. PubMed

Céspedes MV, Casanova I, Parreño M, Mangues R. Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol. 2006;8(5):318–329. PubMed

Singh M, Lima A, Molina R, et al. Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. Nat Biotechnol. 2010;28(6):585–593. PubMed

Francia G, Kerbel RS. Raising the bar for cancer therapy models. Nat Biotechnol. 2010;28(6):561–562. PubMed

Robles AI, Varticovski L. Harnessing genetically engineered mouse models for preclinical testing. Chem Biol Interact. 2008;171(12):159–164. PubMed

Carver BS, Pandolfi PP. Mouse modeling in oncologic preclinical and translational research. Clin Cancer Res. 2006;12(18):5305–5311. PubMed

Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer. 2011;11(2):135–141. PubMed PMC

Baker BM, Chen CS. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(Pt 13):3015–3024. PubMed PMC

Li L, Lu Y. Optimizing a 3D culture system to study the interaction between epithelial breast cancer and its surrounding fibroblasts. J Cancer. 2011;2:458–466. PubMed PMC

Harunaga JS, Yamada KM. Cell-matrix adhesions in 3D. Matrix Biol. 2011;30(7–8):363–368. PubMed PMC

Krause S, Maffini MV, Soto AM, Sonnenschein C. The microenvironment determines the breast cancer cells’ phenotype: organization of MCF7 cells in 3D cultures. BMC Cancer. 2010;10:263. PubMed PMC

Yamada KM, Cukierman S. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130(4):601–610. PubMed

Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3):211–224. PubMed

Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumors: revised RECIST guideline version 1.1. Eur J Cancer. 2009;45(2):228–247. PubMed

Tuma RS. Sometimes size doesn’t matter: reevaluating RECIST and tumor response rate endpoints. J Natl Cancer Inst. 2006;98(18):1272–1274. PubMed

Diederich S. Imaging beyond RECIST: CT and MRI in molecular therapies. Cancer Imaging. 2012;12(2):347–350. PubMed PMC

Bradbury P, Seymour L. Tumor shrinkage and objective response rates: gold standard for oncology efficacy screening trials, or an outdated end point? Cancer J. 2009;15(5):354–360. PubMed

Goldmacher GV, Conklin J. The use of tumour volumetrics to assess response to therapy in anticancer clinical trials. Br J Clin Pharmacol. 2012;73(6):846–854. PubMed PMC

Sullivan DC, Gatsonis C. Response to treatment series: part 1 and introduction, measuring tumor response – challenges in the era of molecular medicine. AJR Am J Roentgenol. 2011;197(1):15–17. PubMed

Weber WA. Assessing tumor response to therapy. J Nucl Med. 2009;50(Suppl 1):S1–S10. PubMed

Mozley PM, Bendtsen C, Zhao B, et al. Measurement of tumor volumes improves RECIST-based response assessments in advanced lung cancer. Transl Oncol. 2012;5(1):19–25. PubMed PMC

Birchard KR, Hoang JK, Herndon JE, Jr, Patz EF., Jr Early changes in tumor size in patients treated for advanced stage nonsmall cell lung cancer do not correlate with survival. Cancer. 2009;115(3):581–586. PubMed

Sekine I, Kubota K, Nishiwaki Y, Sasaki Y, Saijo N. Response rate as an endpoint for evaluating new cytotoxic agents in phase II trials of non-small-cell lung cancer. Ann Oncol. 1998;9(10):1079–1084. PubMed

Weber WA, Czernin J, Phelps ME, Herschman HR. Technology insight: novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs. Nat Clin Pract Oncol. 2008;5(1):44–54. PubMed PMC

Desar IM, van Herpen CM, van Laarhoven HW, Barentsz JO, Oyen WJ, van der Graaf WT. Beyond RECIST: molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer Treat Rev. 2009;35(4):309–321. PubMed

Serkova NJ. Translational imaging endpoints to predict treatment response to novel targeted anticancer agents. Drug Resist Updat. 2011;14(4–5):224–235. PubMed PMC

Garcia Figuerias R, Padhani AR, Goh VJ, et al. Novel oncologic drugs: what they do and how they affect images. Radiographics. 2011;31(17):2059–2091. PubMed

Kang H, Lee HY, Lee KS, Kim JH. Imaging-based tumor treatment response evaluation: review of conventional, new and emerging concepts. Korean J Radiol. 2012;13(4):371–390. PubMed PMC

Elvin P, Garner AP. Tumor invasion and metastasis: challenges facing drug discovery. Curr Opin Pharmacol. 2005;5(4):374–381. PubMed

Gerhardt H, Semb H. Pericytes: gatekeepers in tumour cell metastasis? J Mol Med (Berl) 2008;86(2):135–144. PubMed

Cooke VG, LeBleu VS, Keskin D, et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by MET signaling pathway. Cancer Cell. 2012;21(1):66–81. PubMed PMC

Pàez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15(3):220–231. PubMed PMC

Ebos JML, Kerbel RS. Antiangiogenic therapy:impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol. 2011;8(4):210–221. PubMed PMC

Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett. 2012;320(2):130–137. PubMed

Zhang S, Huang WC, Li P, et al. Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med. 2011;17(4):461–469. PubMed PMC

Muthuswamy SK. Trastuzumab resistance: all roads lead to SRC. Nat Med. 2011;17(4):416–418. PubMed

Woodcock J, Griffin JP, Behrman RE. Development of novel combination therapies. N Engl J Med. 2011;364(11):985–987. PubMed

Esserman LJ, Woodcock J. Accelerating identification and regulatory approval of investigational cancer drugs. JAMA. 2011;306(23):2608–2609. PubMed

Kaiser D. In retrospect: the structure of scientific revolutions. Nature. 2012;484(7393):164–166.

Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–480. PubMed

Lord CJ, Ashworth A. Biology-driven cancer drug development: back to the future. BMC Biol. 2010;8:38. PubMed PMC

Drews J. Case histories, magic bullets and the state of drug discovery. Nat Rev Drug Discov. 2006;5(8):635–640. PubMed

Andreeff M, Goodrich DW, Pardee AB. Cell proliferation, differentiation, and apoptosis. In: Bast RC Jr, Kufe DW, Pollock RE, et al., editors. Holland-Frei Cancer Medicine. 5th ed. Hamilton (ON): BC Decker; 2000. pp. 17–32.

Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta. 2002;1602(2):114–130. PubMed

Dyson FJ. Is science mostly driven by ideas or by tools? Science. 2012;338(6113):1426–1427. PubMed

Drews J. Paul Ehrlich: magister mundi. Nat Rev Drug Discov. 2004;3(9):797–801. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...