Drugs for solid cancer: the productivity crisis prompts a rethink
Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-print
Typ dokumentu časopisecké články
PubMed
23836990
PubMed Central
PMC3699349
DOI
10.2147/ott.s45177
PII: ott-6-767
Knihovny.cz E-zdroje
- Klíčová slova
- Src inhibitors, cancer, drug resistance, metastasis, paradigms, translation,
- Publikační typ
- časopisecké články MeSH
Despite remarkable progress in cancer-drug discovery, the delivery of novel, safe, and sustainably effective products to the clinic has stalled. Using Src as a model, we examine key steps in drug development. The preclinical evidence on the relationship between Src and solid cancer is in sharp contrast with the modest anticancer effect noted in conventional clinical trials. Here, we consider Src inhibitors as an example of a promising drug class directed to invasion and metastasis and identify roadblocks in translation. We question the assumption that a drug-induced tumor shrinkage in preclinical and clinical studies predicts a successful outcome. Our analysis indicates that the key areas requiring attention are related, and include preclinical models (in vitro and mouse models), meaningful clinical trial end points, and an appreciation of the role of metastasis in morbidity and mortality. Current regulations do not reflect the natural history of the disease, and may be unrelated to the key complications: local invasion, metastasis, and the development of resistance. Alignment of preclinical and clinical studies and regulations based on mechanistic trial end points and platforms may help in overcoming these roadblocks. Viewed kaleidoscopically, most elements necessary and sufficient for a novel translational paradigm are in place.
Zobrazit více v PubMed
DeVita VT, Jr, Rosenberg SA. Two hundred years of cancer research. N Engl J Med. 2012;366(23):2207–2214. PubMed PMC
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. PubMed
Javier RT, Butel JS. The history of tumor virology. Cancer Res. 2008;68(19):7693–7706. PubMed PMC
Scannell JW, Blanckley A, Boldon H, Warrington B. Opinion: diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11(3):191–200. PubMed
Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov. 2011;10(6):428–438. PubMed
Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–715. PubMed
Fernandes M. Judging a cancer drug: Avastin’s story [letter] New York Times. 2011;160(55423):section A.
Brábek J, Fernandes M. Affordable cancer care. Lancet Oncol. 2012;13(1):2–3. PubMed
Kuhn TS. The Structure of Scientific Revolutions: 50th Anniversary Edition. Chicago: University of Chicago Press; 2012.
Sullivan R, Peppercorn J, Sikora K, et al. Delivering affordable cancer care in high-income countries. Lancet Oncol. 2011;12(10):933–980. PubMed
Benowitz S. Provocative questions initiative to fund innovative cancer research. J Natl Cancer Inst. 2012;104(13):966–967. PubMed
Weber GF. Why does cancer therapy lack effective anti-metastasis drugs? Cancer Lett. 2013;328(2):207–211. PubMed
Sleeman JP, Christofori G, Fodde R, et al. Concepts of metastasis in flux: the stromal progression model. Semin Cancer Biol. 2012;22(3):174–186. PubMed
Eckhardt BL, Francis PA, Parker BS, Anderson R. Strategies for the discovery and development of therapies for metastatic breast cancer. Nat Rev Drug Discov. 2012;11(6):479–497. PubMed
Sleeman J, Steeg PS. Cancer metastasis as a therapeutic target. Eur J Cancer. 2010;46(7):177–180. PubMed PMC
Rous P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med. 1911;13(4):397–411. PubMed PMC
Weiss RA, Vogt PK. 100 years of Rous sarcoma virus. J Exp Med. 2011;208(12):2351–2355. PubMed PMC
Stehelin D, Varmus HE, Bishop JM, Vogt PK. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature. 1976;260(5547):170–173. PubMed
Martin GS. The road to Src. Oncogene. 2004;23(48):7910–7917. PubMed
Becsei-Kilborn E. Scientific discovery and scientific reputation: the reception of Peyton Rous’ discovery of the chicken sarcoma virus. J Hist Biol. 2010;43(1):111–157. PubMed
Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci. 2013;126(Pt 2):393–401. PubMed
Zhang S, Yu D. Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. Trends Pharmacol Sci. 2012;33(3):122–128. PubMed PMC
Sirvent A, Benistant C, Roche S. Oncogenic signaling by tyrosine kinases of the SRC family in advanced colorectal cancer. Am J Cancer Res. 2012;2(4):357–371. PubMed PMC
Tsuda M, Tanaka S. Roles for Crk in cancer metastasis and invasion. Genes Cancer. 2012;3(5–6):334–340. PubMed PMC
Elsberger B, Stewart B, Tatarov O, Edwards J. Is Src a viable target for treating solid tumors? Curr Cancer Drug Targets. 2010;10(7):683–694. PubMed
Aleshin A, Finn RS. SRC: a century of science brought to the clinic. Neoplasia. 2010;12(8):599–607. PubMed PMC
Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406. PubMed PMC
Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2010;17(3):320–329. PubMed PMC
Box C, Rogers SJ, Mendiola M, Eccles SA. Tumor-microenvironmental interactions: paths to progression and targets for treatment. Semin Cancer Biol. 2010;20(3):128–138. PubMed
Brábek J, Mierke CT, Rösel D, Veselý P, Fabry B. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Commun Signal. 2010;8:22. PubMed PMC
Loboda A, Nebozhyn MV, Watters JW, et al. EMT is the dominant program in human colon cancer. BMC Med Genomics. 2011;4:9. PubMed PMC
Savagner P. The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol. 2010;21(Suppl 7):S87–S92. PubMed PMC
Roussos ET, Condeelis JS, Patsialou A. Chemotaxis in cancer. Nat Rev Cancer. 2011;11(8):573–587. PubMed PMC
Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration during metastasis. Curr Opin Cell Biol. 2012;24(2):277–283. PubMed PMC
Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer. 2011;11(7):512–522. PubMed PMC
Cukierman E, Bassi DE. Physico-mechanical aspects of extracellular matrix influences on tumorigenic behaviors. Semin Cancer Biol. 2010;20(3):139–145. PubMed PMC
Guck J, Lautenschläger F, Paschke S, Beil M. Critical review: cellular mechanobiology and amoeboid migration. Integr Biol. 2010;2(11–12):575–583. PubMed
Panková K, Rösel D, Novotný M, Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci. 2010;67(1):63–71. PubMed PMC
Kumar S, Weaver VM. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 2009;28(1–2):113–127. PubMed PMC
Mierke CT, Rösel D, Fabry B, Brábek J. Contractile forces in tumor cell migration. Eur J Cell Biol. 2008;87(8–9):669–676. PubMed PMC
Yamaguchi H. Pathological roles of invadopodia in cancer invasion and metastasis. Eur J Cell Biol. 2012;91(11–12):902–907. PubMed
Saltel F, Daubon T, Juin A, et al. Invadosomes: intriguing structures with promise. Eur J Cell Biol. 2011;90(2–3):100–107. PubMed
Tolde O, Rosel D, Vesely P, Folk P, Brábek J. The structure of invadopodia in a complex 3D environment. Eur J Cell Biol. 2010;89(9):674–680. PubMed
Destaing O, Block MR, Planus E, Albiges-Rizo C. Invadosome regulation by adhesion signaling. Curr Opin Cell Biol. 2011;23(5):597–606. PubMed
Wang Y, McNiven MA. Invasive matrix degradation at focal adhesions occurs via protease recruitment by a FAK–p130Cas complex. J Cell Biol. 2012;196(3):375–385. PubMed PMC
Matsui H, Harada I, Sawada Y. Src, p130Cas, and mechanotransduction in cancer cells. Genes Cancer. 2012;3(5–6):394–401. PubMed PMC
Stylli SS, Kaye AH, Lock P. Invadopodia: at the cutting edge of tumour invasion. J Clin Neurosci. 2008;15(7):725–737. PubMed
Eckert MA, Lwin TM, Chang AT, et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell. 2011;19(3):372–386. PubMed PMC
Plé PA, Green TP, Hennequin LF, et al. Discovery of a new class of anilinoquinazoline inhibitors with high affinity and specificity for the tyrosine kinase domain of c-Src. J Med Chem. 2004;47(4):871–887. PubMed
Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004;47(27):6658–6661. PubMed
Hennequin LF, Allen J, Breed J, et al. N-(5-chloro-1,3-benzodioxol-4-yl)-7-(2-(4-methylpiperazin-1-yl)ethoxy.-5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J Med Chem. 2006;49(22):6465–6488. PubMed
Boschelli DH, Wu B, Barrios Sosa AC, et al. Synthesis and Src kinase inhibitory activity of 2-phenyl- and 2-thienyl-7-phenylaminothieno[3,2-b]pyridine-6-carbonitriles. J Med Chem. 2005;48(11):3891–3902. PubMed
Jallal H, Valentino ML, Chen G, Boschelli F, Ali S, Rabbani SA. A Src/Abl kinase inhibitor, SKI-606, blocks breast cancer invasion, growth, and metastasis in vitro and in vivo. Cancer Res. 2007;67(4):1580–1588. PubMed
Vultur A, Buettner R, Kowolik C, et al. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol Cancer Ther. 2008;7(5):1185–1194. PubMed PMC
Green TP, Fennell M, Whittaker R, et al. Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530. Mol Oncol. 2009;3(3):248–261. PubMed PMC
Pichot CS, Hartig SM, Xia L, et al. Dasatinib synergizes with doxorubicin to block growth, migration, and invasion of breast cancer cells. Br J Cancer. 2009;101(1):38–47. PubMed PMC
Dong M, Rice L, Lepler S, Pampo C, Siemann DW. Impact of the Src inhibitor Saracatinib on the metastatic phenotype of a fibrosarcoma KHT tumor model. Anticancer Res. 2010;30(11):4405–4413. PubMed
Schweppe RE, Kerege AA, French JD, Sharma V, Grzywa RL, Haugen BR. Inhibition of Src with AZD0530 reveals the Src-focal adhesion kinase complex as a novel therapeutic target in papillary and anaplastic thyroid cancer. J Clin Endocrinol Metab. 2009;94(6):2199–2203. PubMed PMC
Chan CM, Jing X, Pike LA, et al. Targeted inhibition of SRC kinase with dasatinib blocks thyroid cancer growth and metastasis. Clin Cancer Res. 2012;18(13):3580–3591. PubMed PMC
Rabbani SA, Valentino ML, Arakelian AS, Boschelli F. SKI-606 (bosutinib) blocks prostate cancer invasion, growth, and metastasis in vitro and in vivo through regulation of genes involved in cancer growth and skeletal metastasis. Mol Cancer Ther. 2010;9(5):1147–1157. PubMed
Morton JP, Karim SA, Graham K, et al. Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology. 2010;139(1):292–303. PubMed
Ammer AG, Kelley LC, Hayes KE, et al. Saracatinib impairs head and neck squamous cell carcinoma invasion by disrupting invadopodia function. J Cancer Sci Ther. 2009;1(2):52–61. PubMed PMC
Boyce B, Xing L. Src inhibitors in the treatment of metastatic bone disease: rationale and clinical data. Clin Investig (Lond) 2011;1(12):1695–1706. PubMed PMC
Creedon H, Brunton VG. Src kinase inhibitors: promising cancer therapeutics? Crit Rev Oncog. 2012;17(2):145–159. PubMed
Puls LN, Eadens M, Messersmith W. Current status of Src inhibitors in solid tumor malignancies. Oncologist. 2012;16(5):566–578. PubMed PMC
Burchill SA. What do, can, and should we learn from models to evaluate potential anticancer agents? Future Oncol. 2006;2(2):201–211. PubMed
Decaudin D. Primary human tumor xenografted models (‘tumorgrafts’) for good management of patients with cancer. Anticancer Drugs. 2011;22(9):827–841. PubMed
Ocana A, Pandiella A, Siu LL, Tannock IF. Preclinical development of molecular-targeted agents for cancer. Nat Rev Clin Oncol. 2011;8(4):200–209. PubMed
Caponigro G, Sellers WR. Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov. 2011;10(3):179–187. PubMed
Teicher BA. In vivo/ex vivo and in situ assays used in cancer research: a brief review. Toxicol Pathol. 2009;37(1):114–122. PubMed
Céspedes MV, Casanova I, Parreño M, Mangues R. Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol. 2006;8(5):318–329. PubMed
Singh M, Lima A, Molina R, et al. Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. Nat Biotechnol. 2010;28(6):585–593. PubMed
Francia G, Kerbel RS. Raising the bar for cancer therapy models. Nat Biotechnol. 2010;28(6):561–562. PubMed
Robles AI, Varticovski L. Harnessing genetically engineered mouse models for preclinical testing. Chem Biol Interact. 2008;171(12):159–164. PubMed
Carver BS, Pandolfi PP. Mouse modeling in oncologic preclinical and translational research. Clin Cancer Res. 2006;12(18):5305–5311. PubMed
Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer. 2011;11(2):135–141. PubMed PMC
Baker BM, Chen CS. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(Pt 13):3015–3024. PubMed PMC
Li L, Lu Y. Optimizing a 3D culture system to study the interaction between epithelial breast cancer and its surrounding fibroblasts. J Cancer. 2011;2:458–466. PubMed PMC
Harunaga JS, Yamada KM. Cell-matrix adhesions in 3D. Matrix Biol. 2011;30(7–8):363–368. PubMed PMC
Krause S, Maffini MV, Soto AM, Sonnenschein C. The microenvironment determines the breast cancer cells’ phenotype: organization of MCF7 cells in 3D cultures. BMC Cancer. 2010;10:263. PubMed PMC
Yamada KM, Cukierman S. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130(4):601–610. PubMed
Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3):211–224. PubMed
Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumors: revised RECIST guideline version 1.1. Eur J Cancer. 2009;45(2):228–247. PubMed
Tuma RS. Sometimes size doesn’t matter: reevaluating RECIST and tumor response rate endpoints. J Natl Cancer Inst. 2006;98(18):1272–1274. PubMed
Diederich S. Imaging beyond RECIST: CT and MRI in molecular therapies. Cancer Imaging. 2012;12(2):347–350. PubMed PMC
Bradbury P, Seymour L. Tumor shrinkage and objective response rates: gold standard for oncology efficacy screening trials, or an outdated end point? Cancer J. 2009;15(5):354–360. PubMed
Goldmacher GV, Conklin J. The use of tumour volumetrics to assess response to therapy in anticancer clinical trials. Br J Clin Pharmacol. 2012;73(6):846–854. PubMed PMC
Sullivan DC, Gatsonis C. Response to treatment series: part 1 and introduction, measuring tumor response – challenges in the era of molecular medicine. AJR Am J Roentgenol. 2011;197(1):15–17. PubMed
Weber WA. Assessing tumor response to therapy. J Nucl Med. 2009;50(Suppl 1):S1–S10. PubMed
Mozley PM, Bendtsen C, Zhao B, et al. Measurement of tumor volumes improves RECIST-based response assessments in advanced lung cancer. Transl Oncol. 2012;5(1):19–25. PubMed PMC
Birchard KR, Hoang JK, Herndon JE, Jr, Patz EF., Jr Early changes in tumor size in patients treated for advanced stage nonsmall cell lung cancer do not correlate with survival. Cancer. 2009;115(3):581–586. PubMed
Sekine I, Kubota K, Nishiwaki Y, Sasaki Y, Saijo N. Response rate as an endpoint for evaluating new cytotoxic agents in phase II trials of non-small-cell lung cancer. Ann Oncol. 1998;9(10):1079–1084. PubMed
Weber WA, Czernin J, Phelps ME, Herschman HR. Technology insight: novel imaging of molecular targets is an emerging area crucial to the development of targeted drugs. Nat Clin Pract Oncol. 2008;5(1):44–54. PubMed PMC
Desar IM, van Herpen CM, van Laarhoven HW, Barentsz JO, Oyen WJ, van der Graaf WT. Beyond RECIST: molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer Treat Rev. 2009;35(4):309–321. PubMed
Serkova NJ. Translational imaging endpoints to predict treatment response to novel targeted anticancer agents. Drug Resist Updat. 2011;14(4–5):224–235. PubMed PMC
Garcia Figuerias R, Padhani AR, Goh VJ, et al. Novel oncologic drugs: what they do and how they affect images. Radiographics. 2011;31(17):2059–2091. PubMed
Kang H, Lee HY, Lee KS, Kim JH. Imaging-based tumor treatment response evaluation: review of conventional, new and emerging concepts. Korean J Radiol. 2012;13(4):371–390. PubMed PMC
Elvin P, Garner AP. Tumor invasion and metastasis: challenges facing drug discovery. Curr Opin Pharmacol. 2005;5(4):374–381. PubMed
Gerhardt H, Semb H. Pericytes: gatekeepers in tumour cell metastasis? J Mol Med (Berl) 2008;86(2):135–144. PubMed
Cooke VG, LeBleu VS, Keskin D, et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by MET signaling pathway. Cancer Cell. 2012;21(1):66–81. PubMed PMC
Pàez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15(3):220–231. PubMed PMC
Ebos JML, Kerbel RS. Antiangiogenic therapy:impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol. 2011;8(4):210–221. PubMed PMC
Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett. 2012;320(2):130–137. PubMed
Zhang S, Huang WC, Li P, et al. Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med. 2011;17(4):461–469. PubMed PMC
Muthuswamy SK. Trastuzumab resistance: all roads lead to SRC. Nat Med. 2011;17(4):416–418. PubMed
Woodcock J, Griffin JP, Behrman RE. Development of novel combination therapies. N Engl J Med. 2011;364(11):985–987. PubMed
Esserman LJ, Woodcock J. Accelerating identification and regulatory approval of investigational cancer drugs. JAMA. 2011;306(23):2608–2609. PubMed
Kaiser D. In retrospect: the structure of scientific revolutions. Nature. 2012;484(7393):164–166.
Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–480. PubMed
Lord CJ, Ashworth A. Biology-driven cancer drug development: back to the future. BMC Biol. 2010;8:38. PubMed PMC
Drews J. Case histories, magic bullets and the state of drug discovery. Nat Rev Drug Discov. 2006;5(8):635–640. PubMed
Andreeff M, Goodrich DW, Pardee AB. Cell proliferation, differentiation, and apoptosis. In: Bast RC Jr, Kufe DW, Pollock RE, et al., editors. Holland-Frei Cancer Medicine. 5th ed. Hamilton (ON): BC Decker; 2000. pp. 17–32.
Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta. 2002;1602(2):114–130. PubMed
Dyson FJ. Is science mostly driven by ideas or by tools? Science. 2012;338(6113):1426–1427. PubMed
Drews J. Paul Ehrlich: magister mundi. Nat Rev Drug Discov. 2004;3(9):797–801. PubMed
ARHGAP42 is activated by Src-mediated tyrosine phosphorylation to promote cell motility
Migrastatics-Anti-metastatic and Anti-invasion Drugs: Promises and Challenges
Cell polarity signaling in the plasticity of cancer cell invasiveness
Pragmatic medicine in solid cancer: a translational alternative to precision medicine