ARHGAP42 is activated by Src-mediated tyrosine phosphorylation to promote cell motility
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P30 CA068485
NCI NIH HHS - United States
R01 GM049882
NIGMS NIH HHS - United States
PubMed
28584191
PubMed Central
PMC5536916
DOI
10.1242/jcs.197434
PII: jcs.197434
Knihovny.cz E-zdroje
- Klíčová slova
- Focal adhesion, GAP, GRAF, Motility, RhoA, Src, Tyrosine phosphorylation,
- MeSH
- fokální adheze metabolismus MeSH
- fosforylace MeSH
- lidé MeSH
- myši MeSH
- pohyb buněk fyziologie MeSH
- proteiny aktivující GTPasu genetika metabolismus MeSH
- rho proteiny vázající GTP antagonisté a inhibitory metabolismus MeSH
- rhoA protein vázající GTP antagonisté a inhibitory metabolismus MeSH
- skupina kinas odvozených od src-genu metabolismus MeSH
- tyrosin metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ARHGAP42 protein, human MeSH Prohlížeč
- proteiny aktivující GTPasu MeSH
- rho proteiny vázající GTP MeSH
- rhoA protein vázající GTP MeSH
- RHOA protein, human MeSH Prohlížeč
- RhoA protein, mouse MeSH Prohlížeč
- skupina kinas odvozených od src-genu MeSH
- tyrosin MeSH
The tyrosine kinase Src acts as a key regulator of cell motility by phosphorylating multiple protein substrates that control cytoskeletal and adhesion dynamics. In an earlier phosphotyrosine proteomics study, we identified a novel Rho-GTPase activating protein, now known as ARHGAP42, as a likely biologically relevant Src substrate. ARHGAP42 is a member of a family of RhoGAPs distinguished by tandem BAR-PH domains lying N-terminal to the GAP domain. Like other family members, ARHGAP42 acts preferentially as a GAP for RhoA. We show that Src principally phosphorylates ARHGAP42 on tyrosine 376 (Tyr-376) in the short linker between the BAR-PH and GAP domains. The expression of ARHGAP42 variants in mammalian cells was used to elucidate its regulation. We found that the BAR domain is inhibitory toward the GAP activity of ARHGAP42, such that BAR domain deletion resulted in decreased active GTP-bound RhoA and increased cell motility. With the BAR domain intact, ARHGAP42 GAP activity could be activated by phosphorylation of Tyr-376 to promote motile cell behavior. Thus, phosphorylation of ARHGAP42 Tyr-376 is revealed as a novel regulatory event by which Src can affect actin dynamics through RhoA inhibition.
Zobrazit více v PubMed
Ambroso M. R., Hegde B. G. and Langen R. (2014). Endophilin A1 induces different membrane shapes using a conformational switch that is regulated by phosphorylation. Proc. Natl. Acad. Sci. USA 111, 6982-6987. 10.1073/pnas.1402233111 PubMed DOI PMC
Arthur W. T., Petch L. A. and Burridge K. (2000). Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr. Biol. 10, 719-722. 10.1016/S0960-9822(00)00537-6 PubMed DOI
Bai X., Lenhart K. C., Bird K. E., Suen A. A., Rojas M., Kakoki M., Li F., Smithies O., Mack C. P. and Taylor J. M. (2013). The smooth muscle-selective RhoGAP GRAF3 is a critical regulator of vascular tone and hypertension. Nat. Commun. 4, 2910 10.1038/ncomms3910 PubMed DOI PMC
Bass M. D., Morgan M. R., Roach K. A., Settleman J., Goryachev A. B. and Humphries M. J. (2008). p190RhoGAP is the convergence point of adhesion signals from alpha 5 beta 1 integrin and syndecan-4. J. Cell Biol. 181, 1013-1026. 10.1083/jcb.200711129 PubMed DOI PMC
Billuart P., Bienvenu T., Ronce N., des P. V., Vinet M. C., Zemni R., Carrie A., Beldjord C., Kahn A., Moraine C. et al. (1998). Oligophrenin 1 encodes a rho-GAP protein involved in X-linked mental retardation. Pathol. Biol. (Paris) 46, 678. PubMed
Brábek J., Mojžita D., Novotný M., Pu̇ta F. and Folk P. (2002). The SH3 domain of Src can downregulate its kinase activity in the absence of the SH2 domain-pY527 interaction. Biochem. Biophys. Res. Commun. 296, 664-670. 10.1016/S0006-291X(02)00884-7 PubMed DOI
Cheresh D. A., Leng J. and Klemke R. L. (1999). Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells. J. Cell Biol. 146, 1107-1116. 10.1083/jcb.146.5.1107 PubMed DOI PMC
Corpet F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881-10890. 10.1093/nar/16.22.10881 PubMed DOI PMC
Eberth A., Lundmark R., Gremer L., Dvorsky R., Koessmeier K. T., McMahon H. T. and Ahmadian M. R. (2009). A BAR domain-mediated autoinhibitory mechanism for RhoGAPs of the GRAF family. Biochem. J. 417, 371-379. 10.1042/BJ20081535 PubMed DOI
Eden S., Rohatgi R., Podtelejnikov A. V., Mann M. and Kirschner M. W. (2002). Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418, 790-793. 10.1038/nature00859 PubMed DOI
Fincham V. J. and Frame M. C. (1998). The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility. EMBO J. 17, 81-92. 10.1093/emboj/17.1.81 PubMed DOI PMC
Fincham V. J., Chudleigh A. and Frame M. C. (1999). Regulation of p190 Rho-GAP by v-Src is linked to cytoskeletal disruption during transformation. J. Cell Sci. 112, 947-956. PubMed
Frame M. C. (2004). Newest findings on the oldest oncogene; how activated src does it. J. Cell Sci. 117, 989-998. 10.1242/jcs.01111 PubMed DOI
Frame M. C., Fincham V. J., Carragher N. O. and Wyke J. A. (2002). v-Src's hold over actin and cell adhesions. Nat. Rev. Mol. Cell Biol. 3, 233-245. 10.1038/nrm779 PubMed DOI
García-Mata R., Wennerberg K., Arthur W. T., Noren N. K., Ellerbroek S. M. and Burridge K. (2006). Analysis of activated GAPs and GEFs in cell lysates. Methods Enzymol. 406, 425-437. 10.1016/S0076-6879(06)06031-9 PubMed DOI
Hanks S. K., Ryzhova L., Shin N. Y. and Brabek J. (2003). Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front. Biosci. 8, d982-d996. 10.2741/1114 PubMed DOI
Hildebrand J. D., Taylor J. M. and Parsons J. T. (1996). An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Mol. Cell Biol. 16, 3169-3178. 10.1128/MCB.16.6.3169 PubMed DOI PMC
Horzum U., Ozdil B. and Pesen-Okvur D. (2014). Step-by-step quantitative analysis of focal adhesions. MethodsX. 1, 56-59. 10.1016/j.mex.2014.06.004 PubMed DOI PMC
Huveneers S. and Danen E. H. J. (2009). Adhesion signaling-crosstalk between integrins, Src and Rho. J. Cell Sci. 122, 1059-1069. 10.1242/jcs.039446 PubMed DOI
Jiang W., Betson M., Mulloy R., Foster R., Levay M., Ligeti E. and Settleman J. (2008). p190A RhoGAP is a glycogen synthase kinase-3-beta substrate required for polarized cell migration. J. Biol. Chem. 283, 20978-20988. 10.1074/jbc.M802588200 PubMed DOI PMC
Kim D.-H. and Wirtz D. (2013). Focal adhesion size uniquely predicts cell migration. FASEB J. 27, 1351-1361. 10.1096/fj.12-220160 PubMed DOI PMC
Kiyokawa E., Hashimoto Y., Kobayashi S., Sugimura H., Kurata T. and Matsuda M. (1998). Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 12, 3331-3336. 10.1101/gad.12.21.3331 PubMed DOI PMC
Klemke R. L., Leng J., Molander R., Brooks P. C., Vuori K. and Cheresh D. A. (1998). CAS/Crk coupling serves as a “molecular switch” for induction of cell migration. J. Cell Biol. 140, 961-972. 10.1083/jcb.140.4.961 PubMed DOI PMC
Klinghoffer R. A., Sachsenmaier C., Cooper J. A. and Soriano P. (1999). Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459-2471. 10.1093/emboj/18.9.2459 PubMed DOI PMC
Lessey E. C., Guilluy C. and Burridge K. (2012). From mechanical force to RhoA activation. Biochemistry 51, 7420-7432. 10.1021/bi300758e PubMed DOI PMC
Li J., Mao X., Dong L. Q., Liu F. and Tong L. (2007). Crystal structures of the BAR-PH and PTB domains of human APPL1. Structure 15, 525-533. 10.1016/j.str.2007.03.011 PubMed DOI
Lundmark R., Doherty G. J., Howes M. T., Cortese K., Vallis Y., Parton R. G. and McMahon H. T. (2008). The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr. Biol. 18, 1802-1808. 10.1016/j.cub.2008.10.044 PubMed DOI PMC
Luo W., Slebos R. J., Hill S., Li M., Brábek J., Amanchy R., Chaerkady R., Pandey A., Ham A.-J. L. and Hanks S. K. (2008). Global impact of oncogenic Src on a phosphotyrosine proteome. J. Proteome. Res. 7, 3447-3460. 10.1021/pr800187n PubMed DOI PMC
Mason F. M., Heimsath E. G., Higgs H. N. and Soderling S. H. (2011). Bi-modal regulation of a formin by srGAP2. J. Biol. Chem. 286, 6577-6586. 10.1074/jbc.M110.190397 PubMed DOI PMC
Mertins P., Eberl H. C., Renkawitz J., Olsen J. V., Tremblay M. L., Mann M., Ullrich A. and Daub H. (2008). Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. Mol. Cell Proteomics. 7, 1763-1777. 10.1074/mcp.M800196-MCP200 PubMed DOI PMC
Miki H., Yamaguchi H., Suetsugu S. and Takenawa T. (2000). IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732-735. 10.1038/35047107 PubMed DOI
Nojima Y., Morino N., Mimura T., Hamasaki K., Furuya H., Sakai R., Sato T., Tachibana K., Morimoto C., Yazaki Y. et al. (1995). Integrin-mediated cell adhesion promotes tyrosine phosphorylation of p130Cas, a Src homology 3-containing molecule having multiple Src homology 2-binding motifs. J. Biol. Chem. 270, 15398-15402. 10.1074/jbc.270.25.15398 PubMed DOI
Noren N. K., Liu B. P., Burridge K. and Kreft B. (2000). p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol. 150, 567-580. 10.1083/jcb.150.3.567 PubMed DOI PMC
Omelchenko T., Vasiliev J. M., Gelfand I. M., Feder H. H. and Bonder E. M. (2002). Mechanisms of polarization of the shape of fibroblasts and epitheliocytes: separation of the roles of microtubules and Rho-dependent actin-myosin contractility. Proc. Natl. Acad. Sci. USA 99, 10452-10457. 10.1073/pnas.152339899 PubMed DOI PMC
Peter B. J., Kent H. M., Mills I. G., Vallis Y., Butler P. J., Evans P. R. and McMahon H. T. (2004). BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495-499. 10.1126/science.1092586 PubMed DOI
Prakash S. K., Paylor R., Jenna S., Lamarche-Vane N., Armstrong D. L., Xu B., Mancini M. A. and Zoghbi H. Y. (2000). Functional analysis of ARHGAP6, a novel GTPase-activating protein for RhoA. Hum. Mol. Genet. 9, 477-488. 10.1093/hmg/9.4.477 PubMed DOI
Quan A., Xue J., Wielens J., Smillie K. J., Anggono V., Parker M. W., Cousin M. A., Graham M. E. and Robinson P. J. (2012). Phosphorylation of syndapin I F-BAR domain at two helix-capping motifs regulates membrane tubulation. Proc. Natl. Acad. Sci. USA 109, 3760-3765. 10.1073/pnas.1108294109 PubMed DOI PMC
Raftopoulou M. and Hall A. (2004). Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23-32. 10.1016/j.ydbio.2003.06.003 PubMed DOI
Ren X. D., Kiosses W. B., Sieg D. J., Otey C. A., Schlaepfer D. D. and Schwartz M. A. (2000). Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 113, 3673-3678. PubMed
Ren X.-R., Du Q.-S., Huang Y.-Z., Ao S.-Z., Mei L. and Xiong W.-C. (2001). Regulation of CDC42 GTPase by proline-rich tyrosine kinase 2 interacting with PSGAP, a novel pleckstrin homology and Src homology 3 domain containing rhoGAP protein. J. Cell Biol. 152, 971-984. 10.1083/jcb.152.5.971 PubMed DOI PMC
Ridley A. J., Paterson H. F., Johnston C. L., Diekmann D. and Hall A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401-410. 10.1016/0092-8674(92)90164-8 PubMed DOI
Roberts-Galbraith R. H. and Gould K. L. (2010). Setting the F-BAR: functions and regulation of the F-BAR protein family. Cell Cycle 9, 4091-4097. 10.4161/cc.9.20.13587 PubMed DOI
Rosel D., Brabek J., Vesely P. and Fernandes M. (2013). Drugs for solid cancer: the productivity crisis prompts a rethink. Onco. Targets. Ther. 6, 767-777. 10.2147/OTT.S45177 PubMed DOI PMC
Rottner K., Hall A. and Small J. V. (1999). Interplay between Rac and Rho in the control of substrate contact dynamics. Curr. Biol. 9, 640-648. 10.1016/S0960-9822(99)80286-3 PubMed DOI
Schlaepfer D. D., Hanks S. K., Hunter T. and van der Geer P. (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372, 786-791. 10.1038/372786a0 PubMed DOI
Sharma A. and Mayer B. J. (2008). Phosphorylation of p130Cas initiates Rac activation and membrane ruffling. BMC. Cell Biol. 9, 50 10.1186/1471-2121-9-50 PubMed DOI PMC
Shibata H., Oishi K., Yamagiwa A., Matsumoto M., Mukai H. and Ono Y. (2001). PKNbeta interacts with the SH3 domains of Graf and a novel Graf related protein, Graf2, which are GTPase activating proteins for Rho family. J. Biochem. 130, 23-31. 10.1093/oxfordjournals.jbchem.a002958 PubMed DOI
Tatsis N., Lannigan D. A. and Macara I. G. (1998). The function of the p190 Rho GTPase-activating protein is controlled by its N-terminal GTP binding domain. J. Biol. Chem. 273, 34631-34638. 10.1074/jbc.273.51.34631 PubMed DOI
ten Klooster J. P., Jaffer Z. M., Chernoff J. and Hordijk P. L. (2006). Targeting and activation of Rac1 are mediated by the exchange factor beta-Pix. J. Cell Biol. 172, 759-769. 10.1083/jcb.200509096 PubMed DOI PMC
Tolde O., Rosel D., Janostiak R., Vesely P. and Brabek J. (2012). Dynamics and morphology of focal adhesions in complex 3D environment. Folia Biol. 58, 177-184. PubMed
Webb D. J., Donais K., Whitmore L. A., Thomas S. M., Turner C. E., Parsons J. T. and Horwitz A. F. (2004). FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell Biol. 6, 154-161. 10.1038/ncb1094 PubMed DOI
Welch M. D. and Mullins R. D. (2002). Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 18, 247-288. 10.1146/annurev.cellbio.18.040202.112133 PubMed DOI
Zhu G., Chen J., Liu J., Brunzelle J. S., Huang B., Wakeham N., Terzyan S., Li X., Rao Z., Li G. et al. (2007). Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5. EMBO J. 26, 3484-3493. 10.1038/sj.emboj.7601771 PubMed DOI PMC
A Screen for PKN3 Substrates Reveals an Activating Phosphorylation of ARHGAP18