Peptide-Based Identification of Phytophthora Isolates and Phytophthora Detection in Planta

. 2020 Dec 12 ; 21 (24) : . [epub] 20201212

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33322721

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000453 European Regional Development Fund
QK1910045 The Ministry of Agriculture of the Czech Republic
Ministry of Education, Youths and Sports of the Czech Republic LQ1601
AF-IGA2019-IP035 Mendel University in Brno

Phytophthora is arguably one of the most damaging genera of plant pathogens. This pathogen is well suited to transmission via the international plant trade, and globalization has been promoting its spread since the 19th century. Early detection is essential for reducing its economic and ecological impact. Here, a shotgun proteomics approach was utilized for Phytophthora analysis. The collection of 37 Phytophthora isolates representing 12 different species was screened for species-specific peptide patterns. Next, Phytophthora proteins were detected in planta, employing model plants Solanum tuberosum and Hordeum vulgare. Although the evolutionarily conserved sequences represented more than 10% of the host proteome and limited the pathogen detection, the comparison between qPCR and protein data highlighted more than 300 protein markers, which correlated positively with the amount of P. infestans DNA. Finally, the analysis of P. palmivora response in barley revealed significant alterations in plant metabolism. These changes included enzymes of cell wall metabolism, ROS production, and proteins involved in trafficking. The observed root-specific attenuation in stress-response mechanisms, including the biosynthesis of jasmonates, ethylene and polyamines, and an accumulation of serotonin, provided the first insight into molecular mechanisms behind this particular biotic interaction.

Zobrazit více v PubMed

Burgess T.I., McDougall K.L., Scott P.M., Hardy G.E.S.S., Garnas J. Predictors of Phytophthora diversity and community composition in natural areas across diverse Australian ecoregions. Ecography. 2019;42:565–577. doi: 10.1111/ecog.03904. DOI

Erwin D.C., Ribeiro O.K. Phytophthora Diseases Worldwide. APS Press; St. Paul, MN, USA: 1996.

Judelson H.S., Ah-Fong A.M.V. Exchanges at the plant-Oomycete interface that influence disease. Plant Physiol. 2019;179:1198–1211. doi: 10.1104/pp.18.00979. PubMed DOI PMC

Fawke S., Doumane M., Schornack S. Oomycete interactions with plants: Infection strategies and resistance principles. Microbiol. Mol. Biol. Rev. 2015;79:263–280. doi: 10.1128/MMBR.00010-15. PubMed DOI PMC

Werres S., Marwitz R., Man In’t veld W.A., De Cock A.W.A.M., Bonants P.J.M., De Weerdt M., Themann K., Ilieva E., Baayen R.P. Phytophthora ramorum sp. nov., a new pathogen on Rhododendron and Viburnum. Mycol. Res. 2001;105:1155–1165. doi: 10.1016/S0953-7562(08)61986-3. DOI

Vettraino A.M., Morel O., Perlerou C., Robin C., Diamandis S., Vannini A. Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with ink disease and crown decline. Eur. J. Plant Pathol. 2005;111:169–180. doi: 10.1007/s10658-004-1882-0. DOI

Hansen E.M. Phytophthora species emerging as pathogens of forest trees. Curr. For. Reports. 2015;1:16–24. doi: 10.1007/s40725-015-0007-7. DOI

Jung T., Orlikowski L., Henricot B., Abad-Campos P., Aday A.G., Aguín Casal O., Bakonyi J., Cacciola S.O., Cech T., Chavarriaga D., et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016;46:134–163. doi: 10.1111/efp.12239. DOI

Jung T., Stukely M.J.C., Hardy G.E.S.J., White D., Paap T., Dunstan W.A., Burgess T.I. Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: Evolutionary and ecological implications. Pers. Mol. Phylogeny Evol. Fungi. 2011;26:13–39. doi: 10.3767/003158511X557577. PubMed DOI PMC

Kroon L.P.N.M., Brouwer H., de Cock A.W.A.M., Govers F. The genus Phytophthora anno 2012. Phytopathology. 2012;102:348–364. doi: 10.1094/PHYTO-01-11-0025. PubMed DOI

O’Brien P.A., Williams N., Hardy G.E.S. Detecting Phytophthora. Crit. Rev. Microbiol. 2009;35:169–181. doi: 10.1080/10408410902831518. PubMed DOI

Yang X., Tyler B.M., Hong C. An expanded phylogeny for the genus Phytophthora. IMA Fungus. 2017;8:355–384. doi: 10.5598/imafungus.2017.08.02.09. PubMed DOI PMC

Cooke D.E.L., Schena L., Cacciola S.O. Tools to detect, identify and monitor Phytophthora species in natural ecosystems. J. Plant Pathol. 2007;89:13–28.

Yang X., Hong C. Differential usefulness of nine commonly used genetic markers for identifying Phytophthora species. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.02334. PubMed DOI PMC

Strejcek M., Smrhova T., Junkova P., Uhlik O. Whole-Cell MALDI-TOF MS Versus 16S rRNA Gene analysis for identification and dereplication of recurrent bacterial isolates. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.01294. PubMed DOI PMC

Hayoun K., Gaillard J.-C., Pible O., Alpha-Bazin B., Armengaud J. High-throughput proteotyping of bacterial isolates by double barrel chromatography-tandem mass spectrometry based on microplate paramagnetic beads and phylopeptidomics. J. Proteomics. 2020;226:103887. doi: 10.1016/j.jprot.2020.103887. PubMed DOI

Hayoun K., Pible O., Petit P., Allain F., Jouffret V., Culotta K., Rivasseau C., Armengaud J., Alpha-Bazin B. Proteotyping environmental microorganisms by Phylopeptidomics: Case study screening water from a radioactive material storage pool. Microorganisms. 2020;8:1525. doi: 10.3390/microorganisms8101525. PubMed DOI PMC

Le Fevre R., O’Boyle B., Moscou M.J., Schornack S. Colonization of barley by the broad-host hemibiotrophic pathogen Phytophthora palmivora uncovers a leaf development–Dependent involvement of Mlo. Mol. Plant Microbe Interact. 2016;29:385–395. doi: 10.1094/MPMI-12-15-0276-R. PubMed DOI

Shang Y., Wang K., Sun S., Zhou J., Yu J.Q. COP9 Signalosome CSN4 and CSN5 subunits are involved in Jasmonate-dependent defense against root-knot nematode in tomato. Front. Plant Sci. 2019;10 doi: 10.3389/fpls.2019.01223. PubMed DOI PMC

Barreto P., Okura V., Pena I.A., Maia R., Maia I.G., Arruda P. Overexpression of mitochondrial uncoupling protein 1 (UCP1) induces a hypoxic response in Nicotiana tabacum leaves. J. Exp. Bot. 2016;67:301–313. doi: 10.1093/jxb/erv460. PubMed DOI PMC

Ichikawa M., Hirano T., Enami K., Fuselier T., Kato N., Kwon C., Voigt B., Schulze-Lefert P., Baluška F., Sato M.H. Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana. Plant Cell Physiol. 2014;55:790–800. doi: 10.1093/pcp/pcu048. PubMed DOI

Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC

Jung T., Scanu B., Brasier C., Webber J., Milenković I., Corcobado T., Tomšovský M., Pánek M., Bakonyi J., Maia C., et al. Survey in natural forest ecosystems of Vietnam reveals high diversity of both new and described Phytophthora taxa including P. ramorum. Forests. 2020;11:93. doi: 10.3390/f11010093. DOI

Park B., Martin F., Geiser D.M., Kim H.-S., Mansfield M.A., Nikolaeva E., Park S.-Y., Coffey M.D., Russo J., Kim S.H., et al. Phytophthora database 2.0: Update and future direction. Phytopathology. 2013;103:1204–1208. doi: 10.1094/PHYTO-01-13-0023-R. PubMed DOI

Jung T., Durán A., Sanfuentes von Stowasser E., Schena L., Mosca S., Fajardo S., González M., Navarro Ortega A.D., Bakonyi J., Seress D., et al. Diversity of Phytophthora species in Valdivian rainforests and association with severe dieback symptoms. For. Pathol. 2018;48:e12443. doi: 10.1111/efp.12443. DOI

Asandei A., Di Muccio G., Schiopu I., Mereuta L., Dragomir I.S., Chinappi M., Luchian T. Nanopore-based protein sequencing using biopores: Current achievements and open challenges. Small Methods. 2020;4:1900595. doi: 10.1002/smtd.201900595. DOI

Ouldali H., Sarthak K., Ensslen T., Piguet F., Manivet P., Pelta J., Behrends J.C., Aksimentiev A., Oukhaled A. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 2020;38:176–181. doi: 10.1038/s41587-019-0345-2. PubMed DOI PMC

Khan Z., Ford M.J., Cusanovich D.A., Mitrano A., Pritchard J.K., Gilad Y. Primate transcript and protein expression levels evolve under compensatory selection pressures. Science. 2013;342:1100–1104. doi: 10.1126/science.1242379. PubMed DOI PMC

Savidor A., Donahoo R.S., Hurtado-Gonzales O., Land M.L., Shah M.B., Lamour K.H., McDonald W.H. Cross-species global proteomics reveals conserved and unique processes in Phytophthora sojae and Phytophthora ramorum. Mol. Cell. Proteom. 2008;7:1501–1516. doi: 10.1074/mcp.M700431-MCP200. PubMed DOI PMC

Saiz-Fernández I., Milenković I., Berka M., Černý M., Tomšovský M., Brzobohatý B., Kerchev P. Integrated proteomic and metabolomic profiling of Phytophthora cinnamomi attack on sweet chestnut (Castanea sativa) reveals distinct molecular reprogramming proximal to the infection site and away from it. Int. J. Mol. Sci. 2020;21:8525. doi: 10.3390/ijms21228525. PubMed DOI PMC

Wang Y., Kim S.G., Kim S.T., Agrawal G.K., Rakwal R., Kang K.Y. Biotic stress-responsive rice proteome: An overview. J. Plant Biol. 2011;54:219–226. doi: 10.1007/s12374-011-9165-8. DOI

Henty-Ridilla J.L., Shimono M., Li J., Chang J.H., Day B., Staiger C.J. The plant actin Cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathog. 2013;9:e1003290. doi: 10.1371/journal.ppat.1003290. PubMed DOI PMC

Liu J., Pang X., Cheng Y., Yin Y., Zhang Q., Su W., Hu B., Guo Q., Ha S., Zhang J., et al. The Hsp70 gene family in Solanum tuberosum: Genome-wide identification, phylogeny, and expression patterns. Sci. Rep. 2018;8:16628. doi: 10.1038/s41598-018-34878-7. PubMed DOI PMC

Zuluaga A.P., Vega-Arreguín J.C., Fei Z., Ponnala L., Lee S.J., Matas A.J., Patev S., Fry W.E., Rose J.K.C. Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato. Mol. Plant Pathol. 2016;17:29–41. doi: 10.1111/mpp.12263. PubMed DOI PMC

Evangelisti E., Gogleva A., Hainaux T., Doumane M., Tulin F., Quan C., Yunusov T., Floch K., Schornack S. Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors. BMC Biol. 2017;15:39. doi: 10.1186/s12915-017-0379-1. PubMed DOI PMC

Cerna H., Černý M., Habánová H., Šafářová D., Abushamsiya K., Navrátil M., Brzobohatý B. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV) J. Proteomics. 2017;153:78–88. doi: 10.1016/j.jprot.2016.05.018. PubMed DOI

Dufková H., Berka M., Luklová M., Rashotte A.M., Brzobohatý B., Černý M. Eggplant germination is promoted by hydrogen peroxide and temperature in an independent but overlapping manner. Molecules. 2019;24:4270. doi: 10.3390/molecules24234270. PubMed DOI PMC

Berková V., Kameniarová M., Ondrisková V., Berka M., Menšíková S., Kopecká R., Luklová M., Novák J., Spíchal L., Rashotte A.M., et al. Arabidopsis response to inhibitor of Cytokinin degradation INCYDE: Modulations of Cytokinin signaling and plant proteome. Plants. 2020;9:1563. doi: 10.3390/plants9111563. PubMed DOI PMC

Mierswa I., Wurst M., Klinkenberg R., Scholz M., Euler T. YALE: Rapid prototyping for complex data mining tasks; Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’06; Association for Computing Machinery (ACM); Philadelphia, PA, USA. 20–23 August 2006; p. 935.

Dorfer V., Pichler P., Stranzl T., Stadlmann J., Taus T., Winkler S., Mechtler K. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 2014;13:3679–3684. doi: 10.1021/pr500202e. PubMed DOI PMC

Kong A.T., Leprevost F.V., Avtonomov D.M., Mellacheruvu D., Nesvizhskii A.I. MSFragger: Ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods. 2017;14:513–520. doi: 10.1038/nmeth.4256. PubMed DOI PMC

Pino L.K., Searle B.C., Bollinger J.G., Nunn B., MacLean B., MacCoss M.J. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 2020;39:229–244. doi: 10.1002/mas.21540. PubMed DOI PMC

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Llorente B., Bravo-Almonacid F., Cvitanich C., Orlowska E., Torres H.N., Flawiá M.M., Alonso G.D. A quantitative real-time PCR method for in planta monitoring of Phytophthora infestans growth. Lett. Appl. Microbiol. 2010;51:603–610. doi: 10.1111/j.1472-765X.2010.02942.x. PubMed DOI

Berka M., Luklová M., Dufková H., Malých V., Novák J., Saiz-Fernández I., Rashotte A.M., Brzobohaty B., Cerny M. Barley root proteome and metabolome in response to cytokinin and abiotic stimuli. Front. Plant Sci. 2020;11:1647. doi: 10.3389/fpls.2020.590337. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...