Peptide-Based Identification of Phytophthora Isolates and Phytophthora Detection in Planta
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000453
European Regional Development Fund
QK1910045
The Ministry of Agriculture of the Czech Republic
Ministry of Education, Youths and Sports of the Czech Republic
LQ1601
AF-IGA2019-IP035
Mendel University in Brno
PubMed
33322721
PubMed Central
PMC7763169
DOI
10.3390/ijms21249463
PII: ijms21249463
Knihovny.cz E-zdroje
- Klíčová slova
- Hordeum vulgare, P. infestans, P. palmivora, Phytophthora, Solanum tuberosum, leaf inoculation, proteomics,
- MeSH
- chromatografie kapalinová MeSH
- fyziologický stres MeSH
- hmotnostní spektrometrie MeSH
- ječmen (rod) enzymologie metabolismus mikrobiologie MeSH
- listy rostlin metabolismus mikrobiologie MeSH
- metabolické sítě a dráhy MeSH
- nemoci rostlin mikrobiologie MeSH
- peptidy metabolismus MeSH
- Phytophthora infestans genetika izolace a purifikace MeSH
- polymerázová řetězová reakce MeSH
- proteom metabolismus MeSH
- proteomika MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- Solanum tuberosum metabolismus mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peptidy MeSH
- proteom MeSH
- reaktivní formy kyslíku MeSH
- rostlinné proteiny MeSH
Phytophthora is arguably one of the most damaging genera of plant pathogens. This pathogen is well suited to transmission via the international plant trade, and globalization has been promoting its spread since the 19th century. Early detection is essential for reducing its economic and ecological impact. Here, a shotgun proteomics approach was utilized for Phytophthora analysis. The collection of 37 Phytophthora isolates representing 12 different species was screened for species-specific peptide patterns. Next, Phytophthora proteins were detected in planta, employing model plants Solanum tuberosum and Hordeum vulgare. Although the evolutionarily conserved sequences represented more than 10% of the host proteome and limited the pathogen detection, the comparison between qPCR and protein data highlighted more than 300 protein markers, which correlated positively with the amount of P. infestans DNA. Finally, the analysis of P. palmivora response in barley revealed significant alterations in plant metabolism. These changes included enzymes of cell wall metabolism, ROS production, and proteins involved in trafficking. The observed root-specific attenuation in stress-response mechanisms, including the biosynthesis of jasmonates, ethylene and polyamines, and an accumulation of serotonin, provided the first insight into molecular mechanisms behind this particular biotic interaction.
Institute of Biophysics of the Czech Academy of Sciences CZ 61265 Brno Czech Republic
Potato Research Institute Ltd CZ 58001 Havlíčkův Brod Czech Republic
Zobrazit více v PubMed
Burgess T.I., McDougall K.L., Scott P.M., Hardy G.E.S.S., Garnas J. Predictors of Phytophthora diversity and community composition in natural areas across diverse Australian ecoregions. Ecography. 2019;42:565–577. doi: 10.1111/ecog.03904. DOI
Erwin D.C., Ribeiro O.K. Phytophthora Diseases Worldwide. APS Press; St. Paul, MN, USA: 1996.
Judelson H.S., Ah-Fong A.M.V. Exchanges at the plant-Oomycete interface that influence disease. Plant Physiol. 2019;179:1198–1211. doi: 10.1104/pp.18.00979. PubMed DOI PMC
Fawke S., Doumane M., Schornack S. Oomycete interactions with plants: Infection strategies and resistance principles. Microbiol. Mol. Biol. Rev. 2015;79:263–280. doi: 10.1128/MMBR.00010-15. PubMed DOI PMC
Werres S., Marwitz R., Man In’t veld W.A., De Cock A.W.A.M., Bonants P.J.M., De Weerdt M., Themann K., Ilieva E., Baayen R.P. Phytophthora ramorum sp. nov., a new pathogen on Rhododendron and Viburnum. Mycol. Res. 2001;105:1155–1165. doi: 10.1016/S0953-7562(08)61986-3. DOI
Vettraino A.M., Morel O., Perlerou C., Robin C., Diamandis S., Vannini A. Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with ink disease and crown decline. Eur. J. Plant Pathol. 2005;111:169–180. doi: 10.1007/s10658-004-1882-0. DOI
Hansen E.M. Phytophthora species emerging as pathogens of forest trees. Curr. For. Reports. 2015;1:16–24. doi: 10.1007/s40725-015-0007-7. DOI
Jung T., Orlikowski L., Henricot B., Abad-Campos P., Aday A.G., Aguín Casal O., Bakonyi J., Cacciola S.O., Cech T., Chavarriaga D., et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016;46:134–163. doi: 10.1111/efp.12239. DOI
Jung T., Stukely M.J.C., Hardy G.E.S.J., White D., Paap T., Dunstan W.A., Burgess T.I. Multiple new Phytophthora species from ITS Clade 6 associated with natural ecosystems in Australia: Evolutionary and ecological implications. Pers. Mol. Phylogeny Evol. Fungi. 2011;26:13–39. doi: 10.3767/003158511X557577. PubMed DOI PMC
Kroon L.P.N.M., Brouwer H., de Cock A.W.A.M., Govers F. The genus Phytophthora anno 2012. Phytopathology. 2012;102:348–364. doi: 10.1094/PHYTO-01-11-0025. PubMed DOI
O’Brien P.A., Williams N., Hardy G.E.S. Detecting Phytophthora. Crit. Rev. Microbiol. 2009;35:169–181. doi: 10.1080/10408410902831518. PubMed DOI
Yang X., Tyler B.M., Hong C. An expanded phylogeny for the genus Phytophthora. IMA Fungus. 2017;8:355–384. doi: 10.5598/imafungus.2017.08.02.09. PubMed DOI PMC
Cooke D.E.L., Schena L., Cacciola S.O. Tools to detect, identify and monitor Phytophthora species in natural ecosystems. J. Plant Pathol. 2007;89:13–28.
Yang X., Hong C. Differential usefulness of nine commonly used genetic markers for identifying Phytophthora species. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.02334. PubMed DOI PMC
Strejcek M., Smrhova T., Junkova P., Uhlik O. Whole-Cell MALDI-TOF MS Versus 16S rRNA Gene analysis for identification and dereplication of recurrent bacterial isolates. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.01294. PubMed DOI PMC
Hayoun K., Gaillard J.-C., Pible O., Alpha-Bazin B., Armengaud J. High-throughput proteotyping of bacterial isolates by double barrel chromatography-tandem mass spectrometry based on microplate paramagnetic beads and phylopeptidomics. J. Proteomics. 2020;226:103887. doi: 10.1016/j.jprot.2020.103887. PubMed DOI
Hayoun K., Pible O., Petit P., Allain F., Jouffret V., Culotta K., Rivasseau C., Armengaud J., Alpha-Bazin B. Proteotyping environmental microorganisms by Phylopeptidomics: Case study screening water from a radioactive material storage pool. Microorganisms. 2020;8:1525. doi: 10.3390/microorganisms8101525. PubMed DOI PMC
Le Fevre R., O’Boyle B., Moscou M.J., Schornack S. Colonization of barley by the broad-host hemibiotrophic pathogen Phytophthora palmivora uncovers a leaf development–Dependent involvement of Mlo. Mol. Plant Microbe Interact. 2016;29:385–395. doi: 10.1094/MPMI-12-15-0276-R. PubMed DOI
Shang Y., Wang K., Sun S., Zhou J., Yu J.Q. COP9 Signalosome CSN4 and CSN5 subunits are involved in Jasmonate-dependent defense against root-knot nematode in tomato. Front. Plant Sci. 2019;10 doi: 10.3389/fpls.2019.01223. PubMed DOI PMC
Barreto P., Okura V., Pena I.A., Maia R., Maia I.G., Arruda P. Overexpression of mitochondrial uncoupling protein 1 (UCP1) induces a hypoxic response in Nicotiana tabacum leaves. J. Exp. Bot. 2016;67:301–313. doi: 10.1093/jxb/erv460. PubMed DOI PMC
Ichikawa M., Hirano T., Enami K., Fuselier T., Kato N., Kwon C., Voigt B., Schulze-Lefert P., Baluška F., Sato M.H. Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana. Plant Cell Physiol. 2014;55:790–800. doi: 10.1093/pcp/pcu048. PubMed DOI
Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC
Jung T., Scanu B., Brasier C., Webber J., Milenković I., Corcobado T., Tomšovský M., Pánek M., Bakonyi J., Maia C., et al. Survey in natural forest ecosystems of Vietnam reveals high diversity of both new and described Phytophthora taxa including P. ramorum. Forests. 2020;11:93. doi: 10.3390/f11010093. DOI
Park B., Martin F., Geiser D.M., Kim H.-S., Mansfield M.A., Nikolaeva E., Park S.-Y., Coffey M.D., Russo J., Kim S.H., et al. Phytophthora database 2.0: Update and future direction. Phytopathology. 2013;103:1204–1208. doi: 10.1094/PHYTO-01-13-0023-R. PubMed DOI
Jung T., Durán A., Sanfuentes von Stowasser E., Schena L., Mosca S., Fajardo S., González M., Navarro Ortega A.D., Bakonyi J., Seress D., et al. Diversity of Phytophthora species in Valdivian rainforests and association with severe dieback symptoms. For. Pathol. 2018;48:e12443. doi: 10.1111/efp.12443. DOI
Asandei A., Di Muccio G., Schiopu I., Mereuta L., Dragomir I.S., Chinappi M., Luchian T. Nanopore-based protein sequencing using biopores: Current achievements and open challenges. Small Methods. 2020;4:1900595. doi: 10.1002/smtd.201900595. DOI
Ouldali H., Sarthak K., Ensslen T., Piguet F., Manivet P., Pelta J., Behrends J.C., Aksimentiev A., Oukhaled A. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 2020;38:176–181. doi: 10.1038/s41587-019-0345-2. PubMed DOI PMC
Khan Z., Ford M.J., Cusanovich D.A., Mitrano A., Pritchard J.K., Gilad Y. Primate transcript and protein expression levels evolve under compensatory selection pressures. Science. 2013;342:1100–1104. doi: 10.1126/science.1242379. PubMed DOI PMC
Savidor A., Donahoo R.S., Hurtado-Gonzales O., Land M.L., Shah M.B., Lamour K.H., McDonald W.H. Cross-species global proteomics reveals conserved and unique processes in Phytophthora sojae and Phytophthora ramorum. Mol. Cell. Proteom. 2008;7:1501–1516. doi: 10.1074/mcp.M700431-MCP200. PubMed DOI PMC
Saiz-Fernández I., Milenković I., Berka M., Černý M., Tomšovský M., Brzobohatý B., Kerchev P. Integrated proteomic and metabolomic profiling of Phytophthora cinnamomi attack on sweet chestnut (Castanea sativa) reveals distinct molecular reprogramming proximal to the infection site and away from it. Int. J. Mol. Sci. 2020;21:8525. doi: 10.3390/ijms21228525. PubMed DOI PMC
Wang Y., Kim S.G., Kim S.T., Agrawal G.K., Rakwal R., Kang K.Y. Biotic stress-responsive rice proteome: An overview. J. Plant Biol. 2011;54:219–226. doi: 10.1007/s12374-011-9165-8. DOI
Henty-Ridilla J.L., Shimono M., Li J., Chang J.H., Day B., Staiger C.J. The plant actin Cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathog. 2013;9:e1003290. doi: 10.1371/journal.ppat.1003290. PubMed DOI PMC
Liu J., Pang X., Cheng Y., Yin Y., Zhang Q., Su W., Hu B., Guo Q., Ha S., Zhang J., et al. The Hsp70 gene family in Solanum tuberosum: Genome-wide identification, phylogeny, and expression patterns. Sci. Rep. 2018;8:16628. doi: 10.1038/s41598-018-34878-7. PubMed DOI PMC
Zuluaga A.P., Vega-Arreguín J.C., Fei Z., Ponnala L., Lee S.J., Matas A.J., Patev S., Fry W.E., Rose J.K.C. Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato. Mol. Plant Pathol. 2016;17:29–41. doi: 10.1111/mpp.12263. PubMed DOI PMC
Evangelisti E., Gogleva A., Hainaux T., Doumane M., Tulin F., Quan C., Yunusov T., Floch K., Schornack S. Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors. BMC Biol. 2017;15:39. doi: 10.1186/s12915-017-0379-1. PubMed DOI PMC
Cerna H., Černý M., Habánová H., Šafářová D., Abushamsiya K., Navrátil M., Brzobohatý B. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV) J. Proteomics. 2017;153:78–88. doi: 10.1016/j.jprot.2016.05.018. PubMed DOI
Dufková H., Berka M., Luklová M., Rashotte A.M., Brzobohatý B., Černý M. Eggplant germination is promoted by hydrogen peroxide and temperature in an independent but overlapping manner. Molecules. 2019;24:4270. doi: 10.3390/molecules24234270. PubMed DOI PMC
Berková V., Kameniarová M., Ondrisková V., Berka M., Menšíková S., Kopecká R., Luklová M., Novák J., Spíchal L., Rashotte A.M., et al. Arabidopsis response to inhibitor of Cytokinin degradation INCYDE: Modulations of Cytokinin signaling and plant proteome. Plants. 2020;9:1563. doi: 10.3390/plants9111563. PubMed DOI PMC
Mierswa I., Wurst M., Klinkenberg R., Scholz M., Euler T. YALE: Rapid prototyping for complex data mining tasks; Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’06; Association for Computing Machinery (ACM); Philadelphia, PA, USA. 20–23 August 2006; p. 935.
Dorfer V., Pichler P., Stranzl T., Stadlmann J., Taus T., Winkler S., Mechtler K. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 2014;13:3679–3684. doi: 10.1021/pr500202e. PubMed DOI PMC
Kong A.T., Leprevost F.V., Avtonomov D.M., Mellacheruvu D., Nesvizhskii A.I. MSFragger: Ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods. 2017;14:513–520. doi: 10.1038/nmeth.4256. PubMed DOI PMC
Pino L.K., Searle B.C., Bollinger J.G., Nunn B., MacLean B., MacCoss M.J. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 2020;39:229–244. doi: 10.1002/mas.21540. PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Llorente B., Bravo-Almonacid F., Cvitanich C., Orlowska E., Torres H.N., Flawiá M.M., Alonso G.D. A quantitative real-time PCR method for in planta monitoring of Phytophthora infestans growth. Lett. Appl. Microbiol. 2010;51:603–610. doi: 10.1111/j.1472-765X.2010.02942.x. PubMed DOI
Berka M., Luklová M., Dufková H., Malých V., Novák J., Saiz-Fernández I., Rashotte A.M., Brzobohaty B., Cerny M. Barley root proteome and metabolome in response to cytokinin and abiotic stimuli. Front. Plant Sci. 2020;11:1647. doi: 10.3389/fpls.2020.590337. PubMed DOI PMC
Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar
Regulation of heat shock proteins 70 and their role in plant immunity
The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans