Integrated Proteomic and Metabolomic Profiling of Phytophthora cinnamomi Attack on Sweet Chestnut (Castanea sativa) Reveals Distinct Molecular Reprogramming Proximal to the Infection Site and Away from It
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000453.
European Regional Development Fund
PubMed
33198329
PubMed Central
PMC7697766
DOI
10.3390/ijms21228525
PII: ijms21228525
Knihovny.cz E-zdroje
- Klíčová slova
- Phytophthora cinnamomi, metabolomics, proteomics, sweet chestnut,
- MeSH
- cyklopentany metabolismus MeSH
- dřevo MeSH
- Fagaceae metabolismus mikrobiologie MeSH
- homeostáza MeSH
- kořeny rostlin MeSH
- kyselina salicylová metabolismus MeSH
- metabolomika MeSH
- nemoci rostlin mikrobiologie MeSH
- oxylipiny metabolismus MeSH
- Phytophthora patogenita MeSH
- proteomika MeSH
- regulátory růstu rostlin metabolismus MeSH
- signální transdukce MeSH
- vazebná místa MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklopentany MeSH
- jasmonic acid MeSH Prohlížeč
- kyselina salicylová MeSH
- oxylipiny MeSH
- regulátory růstu rostlin MeSH
Phytophthora cinnamomi is one of the most invasive tree pathogens that devastates wild and cultivated forests. Due to its wide host range, knowledge of the infection process at the molecular level is lacking for most of its tree hosts. To expand the repertoire of studied Phytophthora-woody plant interactions and identify molecular mechanisms that can facilitate discovery of novel ways to control its spread and damaging effects, we focused on the interaction between P. cinnamomi and sweet chestnut (Castanea sativa), an economically important tree for the wood processing industry. By using a combination of proteomics, metabolomics, and targeted hormonal analysis, we mapped the effects of P. cinnamomi attack on stem tissues immediately bordering the infection site and away from it. P. cinnamomi led to a massive reprogramming of the chestnut proteome and accumulation of the stress-related hormones salicylic acid (SA) and jasmonic acid (JA), indicating that stem inoculation can be used as an easily accessible model system to identify novel molecular players in P. cinnamomi pathogenicity.
Zobrazit více v PubMed
Robin C., Morel O., Vettraino A.M., Perlerou C., Diamandis S., Vannini A. Genetic variation in susceptibility to Phytophthora Cambivora in European chestnut (Castanea sativa) For. Ecol. Manag. 2006;226:199–207. doi: 10.1016/j.foreco.2006.01.035. DOI
Tziros G.T., Diamandis S. First report of Phytophthora cinnamomi causing ink disease on Castanea sativa in Greece. J. Plant Pathol. 2014;96:415–417. doi: 10.4454/JPP.V96I2.021. DOI
Santos C., Machado H., Correia I., Gomes F., Gomes-Laranjo J., Costa R. Phenotyping Castanea hybrids for Phytophthora cinnamomi resistance. Plant Pathol. 2015;64:901–910. doi: 10.1111/ppa.12313. DOI
Beakes G.W., Thines M., Honda D. eLS. John Wiley & Sons, Ltd.; Chichester, UK: 2015. Straminipile “Fungi”-Taxonomy; pp. 1–9.
Jung T., Pérez-Sierra A., Durán A., Jung M.H., Balci Y., Scanu B. Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Pers. Mol. Phylogeny Evol. Fungi. 2018;40:182–220. doi: 10.3767/persoonia.2018.40.08. PubMed DOI PMC
Erwin D.C., Ribeiro O.K. Phytophthora Diseases Worldwide. APS Press; St. Paul, MN, USA: 1996.
Burgess T.I., Scott J.K., Mcdougall K.L., Stukely M.J.C., Crane C., Dunstan W.A., Brigg F., Andjic V., White D., Rudman T., et al. Current and projected global distribution of Phytophthora cinnamomi, one of the world’s worst plant pathogens. Glob. Chang. Biol. 2017;23:1661–1674. doi: 10.1111/gcb.13492. PubMed DOI
Jung T., Jung M.H., Scanu B., Seress D., Kovács G.M., Maia C., Pérez-Sierra A., Chang T.T., Chandelier A., Heungens K., et al. Six new phytophthora species from ITS clade 7a including two sexually functional heterothallic hybrid species detected in natural ecosystems in Taiwan. Pers. Mol. Phylogeny Evol. Fungi. 2017;38:100–135. doi: 10.3767/003158517X693615. PubMed DOI PMC
Ribeiro O.K. Phytophthora: A Global Perspective. CABI; Wallingford, UK: 2013. A historical perspective of Phytophthora; pp. 1–10.
Vettraino A.M., Morel O., Perlerou C., Robin C., Diamandis S., Vannini A. Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with Ink Disease and crown decline. Eur. J. Plant Pathol. 2005;111:169–180. doi: 10.1007/s10658-004-1882-0. DOI
Khaliq I., Hardy G.E.S.J., Burgess T.I. Phytophthora cinnamomi exhibits phenotypic plasticity in response to cold temperatures. Mycol. Prog. 2020;19:405–415. doi: 10.1007/s11557-020-01578-4. DOI
Zuluaga A.P., Vega-Arreguín J.C., Fei Z., Ponnala L., Lee S.J., Matas A.J., Patev S., Fry W.E., Rose J.K.C. Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato. Mol. Plant Pathol. 2016;17:29–41. doi: 10.1111/mpp.12263. PubMed DOI PMC
Hardham A.R., Blackman L.M. Molecular cytology of Phytophthora-plant interactions. Australas. Plant Pathol. 2010;39:29–35. doi: 10.1071/AP09062. DOI
Attard A., Gourgues M., Callemeyn-Torre N., Keller H. The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytol. 2010;187:449–460. doi: 10.1111/j.1469-8137.2010.03272.x. PubMed DOI
Oßwald W., Fleischmann F., Rigling D., Coelho A.C., Cravador A., Diez J., Dalio R.J., Horta Jung M., Pfanz H., Robin C., et al. Strategies of attack and defence in woody plant-Phytophthora interactions. For. Pathol. 2014;44:169–190. doi: 10.1111/efp.12096. DOI
Wang D., Eyles A., Mandich D., Bonello P. Systemic aspects of host-pathogen interactions in Austrian pine (Pinus nigra): A proteomics approach. Physiol. Mol. Plant Pathol. 2006;68:149–157. doi: 10.1016/j.pmpp.2006.09.005. DOI
Meyer F.E., Shuey L.S., Naidoo S., Mamni T., Berger D.K., Myburg A.A., van den Berg N., Naidoo S. Dual RNA-sequencing of Eucalyptus nitens during Phytophthora cinnamomi challenge reveals pathogen and host factors influencing compatibility. Front. Plant Sci. 2016;7:191. doi: 10.3389/fpls.2016.00191. PubMed DOI PMC
Conrad A.O., Rodriguez-Saona L.E., McPherson B.A., Wood D.L., Bonello P. Identification of Quercus agrifolia (coast live oak) resistant to the invasive pathogen Phytophthora ramorum in native stands using Fourier-transform infrared (FT-IR) spectroscopy. Front. Plant Sci. 2014;5:521. doi: 10.3389/fpls.2014.00521. PubMed DOI PMC
Dodd R.S., Hüberli D., Mayer W., Harnik T.Y., Afzal-Rafii Z., Garbelotto M. Evidence for the role of synchronicity between host phenology and pathogen activity in the distribution of sudden oak death canker disease. New Phytol. 2008;179:505–514. doi: 10.1111/j.1469-8137.2008.02450.x. PubMed DOI
Giesbrecht M.B., Hansen E.M., Kitin P. Histology of Phytophthora Ramorum in Notholithocarpus Densiflorus Bark Tissues. N. Z. J. For. Sci. 2011;41:S89–S100.
Clemenz C., Fleischmann F., Häberle K.H., Matyssek R., Oßwald W. Photosynthetic and leaf water potential responses of Alnus glutinosa saplings to stem-base inoculaton with Phytophthora alni subsp. alni. Tree Physiol. 2008;28:1703–1711. doi: 10.1093/treephys/28.11.1703. PubMed DOI
Doughari J.H. An Overview of Plant Immunity. J. Plant Pathol. Microbiol. 2015;6:1–11. doi: 10.4172/2157-7471.1000322. DOI
Han X., Kahmann R. Manipulation of phytohormone pathways by effectors of filamentous plant pathogens. Front. Plant Sci. 2019;10:822. doi: 10.3389/fpls.2019.00822. PubMed DOI PMC
Lo Presti L., Lanver D., Schweizer G., Tanaka S., Liang L., Tollot M., Zuccaro A., Reissmann S., Kahmann R. Fungal Effectors and Plant Susceptibility. Annu. Rev. Plant Biol. 2015;66:513–545. doi: 10.1146/annurev-arplant-043014-114623. PubMed DOI
Kamoun S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 2006;44:41–60. doi: 10.1146/annurev.phyto.44.070505.143436. PubMed DOI
Kalde M., Nühse T.S., Findlay K., Peck S.C. The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc. Natl. Acad. Sci. USA. 2007;104:11850–11855. doi: 10.1073/pnas.0701083104. PubMed DOI PMC
Leborgne-Castel N., Bouhidel K. Plasma membrane protein trafficking in plant-microbe interactions: A plant cell point of view. Front. Plant Sci. 2014;5:735. doi: 10.3389/fpls.2014.00735. PubMed DOI PMC
dit Frey N.F., Robatzek S. Trafficking vesicles: Pro or contra pathogens? Curr. Opin. Plant Biol. 2009;12:437–443. doi: 10.1016/j.pbi.2009.06.002. PubMed DOI
Teh O.K., Hofius D. Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. J. Exp. Bot. 2014;65:1297–1312. doi: 10.1093/jxb/ert441. PubMed DOI
Bozkurt T.O., Schornack S., Win J., Shindo T., Ilyas M., Oliva R., Cano L.M., Jones A.M.E., Huitema E., Van Der Hoorn R.A.L., et al. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc. Natl. Acad. Sci. USA. 2011;108:20832–20837. doi: 10.1073/pnas.1112708109. PubMed DOI PMC
Chanclud E., Morel J.B. Plant hormones: A fungal point of view. Mol. Plant Pathol. 2016;17:1289–1297. doi: 10.1111/mpp.12393. PubMed DOI PMC
Barakat A., Diloreto D.S., Zhang Y., Smith C., Baier K., Powell W.A., Wheeler N., Sederoff R. Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection. BMC Plant Biol. 2009;9:1–11. doi: 10.1186/1471-2229-9-51. PubMed DOI PMC
Staton M., Zhebentyayeva T., Olukolu B., Fang G.C., Nelson D., Carlson J.E., Abbott A.G. Substantial genome synteny preservation among woody angiosperm species: Comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes. BMC Genom. 2015;16:744. doi: 10.1186/s12864-015-1942-1. PubMed DOI PMC
Preisner M., Wojtasik W., Kostyn K., Boba A., Czuj T., Szopa J., Kulma A. The cinnamyl alcohol dehydrogenase family in flax: Differentiation during plant growth and under stress conditions. J. Plant Physiol. 2018;221:132–143. doi: 10.1016/j.jplph.2017.11.015. PubMed DOI
Li T., Wang Q., Feng R., Li L., Ding L., Fan G., Li W., Du Y., Zhang M., Huang G., et al. Negative regulators of plant immunity derived from cinnamyl alcohol dehydrogenases are targeted by multiple Phytophthora Avr3a-like effectors. New Phytol. 2019 doi: 10.1111/nph.16139. PubMed DOI
Lenman M., Sörensson C., Andreasson E. Enrichment of phosphoproteins and phosphopeptide derivatization identify universal stress proteins in elicitor-treated Arabidopsis. Mol. Plant-Microbe Interact. 2008;21:1275–1284. doi: 10.1094/MPMI-21-10-1275. PubMed DOI
Callard D., Axelos M., Mazzolini L. Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol. 1996;112:705–715. doi: 10.1104/pp.112.2.705. PubMed DOI PMC
Fawke S., Doumane M., Schornack S. Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiol. Mol. Biol. Rev. 2015;79:263–280. doi: 10.1128/MMBR.00010-15. PubMed DOI PMC
Seifikalhor M., Aliniaeifard S., Hassani B., Niknam V., Lastochkina O. Diverse role of γ-aminobutyric acid in dynamic plant cell responses. Plant Cell Rep. 2019;38:847–867. doi: 10.1007/s00299-019-02396-z. PubMed DOI
Ramesh S.A., Tyerman S.D., Gilliham M., Xu B. γ-Aminobutyric acid (GABA) signalling in plants. Cell. Mol. Life Sci. 2017;74:1577–1603. doi: 10.1007/s00018-016-2415-7. PubMed DOI PMC
Carvalhais L.C., Dennis P.G., Badri D.V., Tyson G.W., Vivanco J.M., Schenk P.M. Activation of the Jasmonic Acid Plant Defence Pathway Alters the Composition of Rhizosphere Bacterial Communities. PLoS ONE. 2013;8:e56457. doi: 10.1371/journal.pone.0056457. PubMed DOI PMC
Chong J., Wishart D.S., Xia J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019;68 doi: 10.1002/cpbi.86. PubMed DOI
Huber A.E., Bauerle T.L. Long-distance plant signaling pathways in response to multiple stressors: The gap in knowledge. J. Exp. Bot. 2016;67:2063–2079. doi: 10.1093/jxb/erw099. PubMed DOI
Zwart D.C., Kim S.H. Biochar amendment increases resistance to stem lesions caused by phytophthora spp. in tree seedlings. HortScience. 2012;47:1736–1740. doi: 10.21273/HORTSCI.47.12.1736. DOI
Verslues P.E., Sharma S. Proline Metabolism and Its Implications for Plant-Environment Interaction. Arab. B. 2010;8:e0140. doi: 10.1199/tab.0140. PubMed DOI PMC
Johnová P., Skalák J., Saiz-Fernández I., Brzobohatý B. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2016;1864:916–931. doi: 10.1016/j.bbapap.2016.02.007. PubMed DOI
Lopes-Caitar V.S., Silva S.M.H., Marcelino-Guimaraes F.C. Plant Small Heat Shock Proteins and Its Interactions with Biotic Stress. Springer; Cham, Switzerland: 2016. pp. 19–39.
Maimbo M., Ohnishi K., Hikichi Y., Yoshioka H., Kiba A. Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiol. 2007;145:1588–1599. doi: 10.1104/pp.107.105353. PubMed DOI PMC
Kanzaki H., Saitoh H., Ito A., Fujisawa S., Kamoun S., Katou S., Yoshioka H., Terauchi R. Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to pseudomonas cichorii in Nicotiana benthamiana. Mol. Plant Pathol. 2003;4:383–391. doi: 10.1046/j.1364-3703.2003.00186.x. PubMed DOI
Song T., Ma Z., Shen D., Li Q., Li W., Su L., Ye T., Zhang M., Wang Y., Dou D. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters. PLoS Pathog. 2015;11:e1005348. doi: 10.1371/journal.ppat.1005348. PubMed DOI PMC
Sanchez L., Courteaux B., Hubert J., Kauffmann S., Renault J.H., Clément C., Baillieul F., Dorey S. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol. 2012;160:1630–1641. doi: 10.1104/pp.112.201913. PubMed DOI PMC
Deenamo N., Kuyyogsuy A., Khompatara K., Chanwun T., Ekchaweng K., Churngchow N. Salicylic Acid Induces Resistance in Rubber Tree against Phytophthora palmivora. Int. J. Mol. Sci. 2018;19:1883. doi: 10.3390/ijms19071883. PubMed DOI PMC
Camisón Á., Martín M.Á., Sánchez-Bel P., Flors V., Alcaide F., Morcuende D., Pinto G., Solla A. Hormone and secondary metabolite profiling in chestnut during susceptible and resistant interactions with Phytophthora cinnamomi. J. Plant Physiol. 2019;241:153030. doi: 10.1016/j.jplph.2019.153030. PubMed DOI
Lefevere H., Bauters L., Gheysen G. Salicylic Acid Biosynthesis in Plants. Front. Plant Sci. 2020;11:338. doi: 10.3389/fpls.2020.00338. PubMed DOI PMC
García-Pineda E., Benezer-Benezer M., Gutiérrez-Segundo A., Rangel-Sánchez G., Arreola-Cortés A., Castro-Mercado E. Regulation of defence responses in avocado roots infected with Phytophthora cinnamomi (Rands) Plant Soil. 2010;331:45–56. doi: 10.1007/s11104-009-0225-5. DOI
Sorokan A.V., Burhanova G.F., Maksimov I.V. Anionic peroxidase-mediated oxidative burst requirement for jasmonic acid-dependent Solanum tuberosum defence against Phytophthora infestans. Plant Pathol. 2018;67:349–357. doi: 10.1111/ppa.12743. DOI
Ullah C., Tsai C., Unsicker S.B., Xue L., Reichelt M., Gershenzon J., Hammerbacher A. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins. New Phytol. 2019;221:960–975. doi: 10.1111/nph.15396. PubMed DOI PMC
Ullah C., Unsicker S.B., Fellenberg C., Constabel C.P., Schmidt A., Gershenzon J., Hammerbacher A. Flavan-3-ols are an effective chemical defense against rust infection. Plant Physiol. 2017;175:1560–1578. doi: 10.1104/pp.17.00842. PubMed DOI PMC
Wang L., Ran L., Hou Y., Tian Q., Li C., Liu R., Fan D., Luo K. The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar. New Phytol. 2017;215:351–367. doi: 10.1111/nph.14569. PubMed DOI
Rookes J.E., Wright M.L., Cahill D.M. Elucidation of defence responses and signalling pathways induced in Arabidopsis thaliana following challenge with Phytophthora cinnamomi. Physiol. Mol. Plant Pathol. 2008;72:151–161. doi: 10.1016/j.pmpp.2008.08.005. DOI
Lazebnik J., Frago E., Dicke M., van Loon J.J.A. Phytohormone Mediation of Interactions Between Herbivores and Plant Pathogens. J. Chem. Ecol. 2014;40:730–741. doi: 10.1007/s10886-014-0480-7. PubMed DOI
Shimada T.L., Hara-Nishimura I. Leaf oil bodies are subcellular factories producing antifungal oxylipins. Curr. Opin. Plant Biol. 2015;25:145–150. doi: 10.1016/j.pbi.2015.05.019. PubMed DOI
Schuck S., Kallenbach M., Baldwin I.T., Bonaventure G. The Nicotiana attenuataGLA1 lipase controls the accumulation of Phytophthora parasitica-induced oxylipins and defensive secondary metabolites. Plant Cell Environ. 2014;37:1703–1715. doi: 10.1111/pce.12281. PubMed DOI PMC
Li Y., Liu Z., Hou H., Lei H., Zhu X., Li X., He X., Tian C. Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiol. Plant. 2013;35:3465–3475. doi: 10.1007/s11738-013-1382-y. DOI
Zhu L., Zhou Y., Li X., Zhao J., Guo N., Xing H. Metabolomics Analysis of Soybean Hypocotyls in Response to Phytophthora sojae Infection. Front. Plant Sci. 2018;9:1530. doi: 10.3389/fpls.2018.01530. PubMed DOI PMC
Scharte J., Schön H., Weis E. Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ. 2005;28:1421–1435. doi: 10.1111/j.1365-3040.2005.01380.x. DOI
Morkunas I., Ratajczak L. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol. Plant. 2014;36:1607–1619. doi: 10.1007/s11738-014-1559-z. DOI
Slewinski T.L. Diverse Functional Roles of Monosaccharide Transporters and their Homologs in Vascular Plants: A Physiological Perspective. Mol. Plant. 2011;4:641–662. doi: 10.1093/mp/ssr051. PubMed DOI
Puzanskiy R.K., Yemelyanov V.V., Shishova M.F. Metabolomics as a modern approach for the investigation of potato plant adaptation to biotic and abiotic stress factors. Sel’skokhozyaistvennaya Biol. 2018;53:15–28. doi: 10.15389/agrobiology.2018.1.15eng. DOI
Draper J., Rasmussen S., Zubair H. Annual Plant Reviews online. John Wiley & Sons, Ltd.; Chichester, UK: 2018. Metabolite Analysis and Metabolomics in the Study of Biotrophic Interactions between Plants and Microbes; pp. 25–59.
Coelho A.C., Horta M., Neves D., Cravador A. Involvement of a cinnamyl alcohol dehydrogenase of Quercus suber in the defence response to infection by Phytophthora cinnamomi. Physiol. Mol. Plant Pathol. 2006;69:62–72. doi: 10.1016/j.pmpp.2007.01.001. DOI
Mierziak J., Kostyn K., Kulma A. Flavonoids as important molecules of plant interactions with the environment. Molecules. 2014;19:16240–16265. doi: 10.3390/molecules191016240. PubMed DOI PMC
Treutter D. Significance of flavonoids in plant resistance: A review. Environ. Chem. Lett. 2006;4:147–157. doi: 10.1007/s10311-006-0068-8. DOI
Kim H., O’Connell R., Maekawa-Yoshikawa M., Uemura T., Neumann U., Schulze-Lefert P. The powdery mildew resistance protein RPW8.2 is carried on VAMP721/722 vesicles to the extrahaustorial membrane of haustorial complexes. Plant J. 2014;79:835–847. doi: 10.1111/tpj.12591. PubMed DOI
Viktorova J., Krasny L., Kamlar M., Novakova M., Mackova M., Macek T. Osmotin, a Pathogenesis-Related Protein. Curr. Protein Pept. Sci. 2012;13:672–681. doi: 10.2174/138920312804142129. PubMed DOI
Jalil S.U., Mishra M., Ansari M.I. Current view on chitinase for plant defence. Trends Biosci. 2015;8:6733–6743.
Xiao C., Gao J., Zhang Y., Wang Z., Zhang D., Chen Q., Ye X., Xu Y., Yang G., Yan L., et al. Quantitative proteomics of potato leaves infected with phytophthora infestans provides insights into coordinated and altered protein expression during early and late disease stages. Int. J. Mol. Sci. 2019;20:136. doi: 10.3390/ijms20010136. PubMed DOI PMC
Santos C., Duarte S., Tedesco S., Fevereiro P., Costa R.L. Expression Profiling of Castanea Genes during Resistant and Susceptible Interactions with the Oomycete Pathogen Phytophthora cinnamomi Reveal Possible Mechanisms of Immunity. Front. Plant Sci. 2017;8:515. doi: 10.3389/fpls.2017.00515. PubMed DOI PMC
Hloušková P., Černý M., Kořínková N., Luklová M., Minguet E.G., Brzobohatý B., Galuszka P., Bergougnoux V. Affinity chromatography revealed 14-3-3 interactome of tomato (Solanum lycopersicum L.) during blue light-induced de-etiolation. J. Proteomics. 2019;193:44–61. doi: 10.1016/j.jprot.2018.12.017. PubMed DOI
Hallmark H.T., Černý M., Brzobohatý B., Rashotte A.M. trans-Zeatin-N-glucosides have biological activity in Arabidopsis thaliana. PLoS ONE. 2020;15:e0232762. doi: 10.1371/journal.pone.0232762. PubMed DOI PMC
Dorfer V., Pichler P., Stranzl T., Stadlmann J., Taus T., Winkler S., Mechtler K. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 2014;13:3679–3684. doi: 10.1021/pr500202e. PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Cerna H., Černý M., Habánová H., Šafářová D., Abushamsiya K., Navrátil M., Brzobohatý B. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV) J. Proteomics. 2017;153:78–88. doi: 10.1016/j.jprot.2016.05.018. PubMed DOI
Salem M.A., Yoshida T., Perez de Souza L., Alseekh S., Bajdzienko K., Fernie A.R., Giavalisco P. An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under water-deficit stress. Plant J. 2020;103:tpj.14800. doi: 10.1111/tpj.14800. PubMed DOI
Pino L.K., Searle B.C., Bollinger J.G., Nunn B., MacLean B., MacCoss M.J. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 2020;39:229–244. doi: 10.1002/mas.21540. PubMed DOI PMC
Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., Fridman W.H., Pagès F., Trajanoski Z., Galon J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–1093. doi: 10.1093/bioinformatics/btp101. PubMed DOI PMC
Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar
Regulation of heat shock proteins 70 and their role in plant immunity
The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans
Peptide-Based Identification of Phytophthora Isolates and Phytophthora Detection in Planta