Integrated Proteomic and Metabolomic Profiling of Phytophthora cinnamomi Attack on Sweet Chestnut (Castanea sativa) Reveals Distinct Molecular Reprogramming Proximal to the Infection Site and Away from It

. 2020 Nov 12 ; 21 (22) : . [epub] 20201112

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33198329

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000453. European Regional Development Fund

Phytophthora cinnamomi is one of the most invasive tree pathogens that devastates wild and cultivated forests. Due to its wide host range, knowledge of the infection process at the molecular level is lacking for most of its tree hosts. To expand the repertoire of studied Phytophthora-woody plant interactions and identify molecular mechanisms that can facilitate discovery of novel ways to control its spread and damaging effects, we focused on the interaction between P. cinnamomi and sweet chestnut (Castanea sativa), an economically important tree for the wood processing industry. By using a combination of proteomics, metabolomics, and targeted hormonal analysis, we mapped the effects of P. cinnamomi attack on stem tissues immediately bordering the infection site and away from it. P. cinnamomi led to a massive reprogramming of the chestnut proteome and accumulation of the stress-related hormones salicylic acid (SA) and jasmonic acid (JA), indicating that stem inoculation can be used as an easily accessible model system to identify novel molecular players in P. cinnamomi pathogenicity.

Zobrazit více v PubMed

Robin C., Morel O., Vettraino A.M., Perlerou C., Diamandis S., Vannini A. Genetic variation in susceptibility to Phytophthora Cambivora in European chestnut (Castanea sativa) For. Ecol. Manag. 2006;226:199–207. doi: 10.1016/j.foreco.2006.01.035. DOI

Tziros G.T., Diamandis S. First report of Phytophthora cinnamomi causing ink disease on Castanea sativa in Greece. J. Plant Pathol. 2014;96:415–417. doi: 10.4454/JPP.V96I2.021. DOI

Santos C., Machado H., Correia I., Gomes F., Gomes-Laranjo J., Costa R. Phenotyping Castanea hybrids for Phytophthora cinnamomi resistance. Plant Pathol. 2015;64:901–910. doi: 10.1111/ppa.12313. DOI

Beakes G.W., Thines M., Honda D. eLS. John Wiley & Sons, Ltd.; Chichester, UK: 2015. Straminipile “Fungi”-Taxonomy; pp. 1–9.

Jung T., Pérez-Sierra A., Durán A., Jung M.H., Balci Y., Scanu B. Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Pers. Mol. Phylogeny Evol. Fungi. 2018;40:182–220. doi: 10.3767/persoonia.2018.40.08. PubMed DOI PMC

Erwin D.C., Ribeiro O.K. Phytophthora Diseases Worldwide. APS Press; St. Paul, MN, USA: 1996.

Burgess T.I., Scott J.K., Mcdougall K.L., Stukely M.J.C., Crane C., Dunstan W.A., Brigg F., Andjic V., White D., Rudman T., et al. Current and projected global distribution of Phytophthora cinnamomi, one of the world’s worst plant pathogens. Glob. Chang. Biol. 2017;23:1661–1674. doi: 10.1111/gcb.13492. PubMed DOI

Jung T., Jung M.H., Scanu B., Seress D., Kovács G.M., Maia C., Pérez-Sierra A., Chang T.T., Chandelier A., Heungens K., et al. Six new phytophthora species from ITS clade 7a including two sexually functional heterothallic hybrid species detected in natural ecosystems in Taiwan. Pers. Mol. Phylogeny Evol. Fungi. 2017;38:100–135. doi: 10.3767/003158517X693615. PubMed DOI PMC

Ribeiro O.K. Phytophthora: A Global Perspective. CABI; Wallingford, UK: 2013. A historical perspective of Phytophthora; pp. 1–10.

Vettraino A.M., Morel O., Perlerou C., Robin C., Diamandis S., Vannini A. Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with Ink Disease and crown decline. Eur. J. Plant Pathol. 2005;111:169–180. doi: 10.1007/s10658-004-1882-0. DOI

Khaliq I., Hardy G.E.S.J., Burgess T.I. Phytophthora cinnamomi exhibits phenotypic plasticity in response to cold temperatures. Mycol. Prog. 2020;19:405–415. doi: 10.1007/s11557-020-01578-4. DOI

Zuluaga A.P., Vega-Arreguín J.C., Fei Z., Ponnala L., Lee S.J., Matas A.J., Patev S., Fry W.E., Rose J.K.C. Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato. Mol. Plant Pathol. 2016;17:29–41. doi: 10.1111/mpp.12263. PubMed DOI PMC

Hardham A.R., Blackman L.M. Molecular cytology of Phytophthora-plant interactions. Australas. Plant Pathol. 2010;39:29–35. doi: 10.1071/AP09062. DOI

Attard A., Gourgues M., Callemeyn-Torre N., Keller H. The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent Phytophthora parasitica infection. New Phytol. 2010;187:449–460. doi: 10.1111/j.1469-8137.2010.03272.x. PubMed DOI

Oßwald W., Fleischmann F., Rigling D., Coelho A.C., Cravador A., Diez J., Dalio R.J., Horta Jung M., Pfanz H., Robin C., et al. Strategies of attack and defence in woody plant-Phytophthora interactions. For. Pathol. 2014;44:169–190. doi: 10.1111/efp.12096. DOI

Wang D., Eyles A., Mandich D., Bonello P. Systemic aspects of host-pathogen interactions in Austrian pine (Pinus nigra): A proteomics approach. Physiol. Mol. Plant Pathol. 2006;68:149–157. doi: 10.1016/j.pmpp.2006.09.005. DOI

Meyer F.E., Shuey L.S., Naidoo S., Mamni T., Berger D.K., Myburg A.A., van den Berg N., Naidoo S. Dual RNA-sequencing of Eucalyptus nitens during Phytophthora cinnamomi challenge reveals pathogen and host factors influencing compatibility. Front. Plant Sci. 2016;7:191. doi: 10.3389/fpls.2016.00191. PubMed DOI PMC

Conrad A.O., Rodriguez-Saona L.E., McPherson B.A., Wood D.L., Bonello P. Identification of Quercus agrifolia (coast live oak) resistant to the invasive pathogen Phytophthora ramorum in native stands using Fourier-transform infrared (FT-IR) spectroscopy. Front. Plant Sci. 2014;5:521. doi: 10.3389/fpls.2014.00521. PubMed DOI PMC

Dodd R.S., Hüberli D., Mayer W., Harnik T.Y., Afzal-Rafii Z., Garbelotto M. Evidence for the role of synchronicity between host phenology and pathogen activity in the distribution of sudden oak death canker disease. New Phytol. 2008;179:505–514. doi: 10.1111/j.1469-8137.2008.02450.x. PubMed DOI

Giesbrecht M.B., Hansen E.M., Kitin P. Histology of Phytophthora Ramorum in Notholithocarpus Densiflorus Bark Tissues. N. Z. J. For. Sci. 2011;41:S89–S100.

Clemenz C., Fleischmann F., Häberle K.H., Matyssek R., Oßwald W. Photosynthetic and leaf water potential responses of Alnus glutinosa saplings to stem-base inoculaton with Phytophthora alni subsp. alni. Tree Physiol. 2008;28:1703–1711. doi: 10.1093/treephys/28.11.1703. PubMed DOI

Doughari J.H. An Overview of Plant Immunity. J. Plant Pathol. Microbiol. 2015;6:1–11. doi: 10.4172/2157-7471.1000322. DOI

Han X., Kahmann R. Manipulation of phytohormone pathways by effectors of filamentous plant pathogens. Front. Plant Sci. 2019;10:822. doi: 10.3389/fpls.2019.00822. PubMed DOI PMC

Lo Presti L., Lanver D., Schweizer G., Tanaka S., Liang L., Tollot M., Zuccaro A., Reissmann S., Kahmann R. Fungal Effectors and Plant Susceptibility. Annu. Rev. Plant Biol. 2015;66:513–545. doi: 10.1146/annurev-arplant-043014-114623. PubMed DOI

Kamoun S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 2006;44:41–60. doi: 10.1146/annurev.phyto.44.070505.143436. PubMed DOI

Kalde M., Nühse T.S., Findlay K., Peck S.C. The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc. Natl. Acad. Sci. USA. 2007;104:11850–11855. doi: 10.1073/pnas.0701083104. PubMed DOI PMC

Leborgne-Castel N., Bouhidel K. Plasma membrane protein trafficking in plant-microbe interactions: A plant cell point of view. Front. Plant Sci. 2014;5:735. doi: 10.3389/fpls.2014.00735. PubMed DOI PMC

dit Frey N.F., Robatzek S. Trafficking vesicles: Pro or contra pathogens? Curr. Opin. Plant Biol. 2009;12:437–443. doi: 10.1016/j.pbi.2009.06.002. PubMed DOI

Teh O.K., Hofius D. Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. J. Exp. Bot. 2014;65:1297–1312. doi: 10.1093/jxb/ert441. PubMed DOI

Bozkurt T.O., Schornack S., Win J., Shindo T., Ilyas M., Oliva R., Cano L.M., Jones A.M.E., Huitema E., Van Der Hoorn R.A.L., et al. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc. Natl. Acad. Sci. USA. 2011;108:20832–20837. doi: 10.1073/pnas.1112708109. PubMed DOI PMC

Chanclud E., Morel J.B. Plant hormones: A fungal point of view. Mol. Plant Pathol. 2016;17:1289–1297. doi: 10.1111/mpp.12393. PubMed DOI PMC

Barakat A., Diloreto D.S., Zhang Y., Smith C., Baier K., Powell W.A., Wheeler N., Sederoff R. Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection. BMC Plant Biol. 2009;9:1–11. doi: 10.1186/1471-2229-9-51. PubMed DOI PMC

Staton M., Zhebentyayeva T., Olukolu B., Fang G.C., Nelson D., Carlson J.E., Abbott A.G. Substantial genome synteny preservation among woody angiosperm species: Comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes. BMC Genom. 2015;16:744. doi: 10.1186/s12864-015-1942-1. PubMed DOI PMC

Preisner M., Wojtasik W., Kostyn K., Boba A., Czuj T., Szopa J., Kulma A. The cinnamyl alcohol dehydrogenase family in flax: Differentiation during plant growth and under stress conditions. J. Plant Physiol. 2018;221:132–143. doi: 10.1016/j.jplph.2017.11.015. PubMed DOI

Li T., Wang Q., Feng R., Li L., Ding L., Fan G., Li W., Du Y., Zhang M., Huang G., et al. Negative regulators of plant immunity derived from cinnamyl alcohol dehydrogenases are targeted by multiple Phytophthora Avr3a-like effectors. New Phytol. 2019 doi: 10.1111/nph.16139. PubMed DOI

Lenman M., Sörensson C., Andreasson E. Enrichment of phosphoproteins and phosphopeptide derivatization identify universal stress proteins in elicitor-treated Arabidopsis. Mol. Plant-Microbe Interact. 2008;21:1275–1284. doi: 10.1094/MPMI-21-10-1275. PubMed DOI

Callard D., Axelos M., Mazzolini L. Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol. 1996;112:705–715. doi: 10.1104/pp.112.2.705. PubMed DOI PMC

Fawke S., Doumane M., Schornack S. Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiol. Mol. Biol. Rev. 2015;79:263–280. doi: 10.1128/MMBR.00010-15. PubMed DOI PMC

Seifikalhor M., Aliniaeifard S., Hassani B., Niknam V., Lastochkina O. Diverse role of γ-aminobutyric acid in dynamic plant cell responses. Plant Cell Rep. 2019;38:847–867. doi: 10.1007/s00299-019-02396-z. PubMed DOI

Ramesh S.A., Tyerman S.D., Gilliham M., Xu B. γ-Aminobutyric acid (GABA) signalling in plants. Cell. Mol. Life Sci. 2017;74:1577–1603. doi: 10.1007/s00018-016-2415-7. PubMed DOI PMC

Carvalhais L.C., Dennis P.G., Badri D.V., Tyson G.W., Vivanco J.M., Schenk P.M. Activation of the Jasmonic Acid Plant Defence Pathway Alters the Composition of Rhizosphere Bacterial Communities. PLoS ONE. 2013;8:e56457. doi: 10.1371/journal.pone.0056457. PubMed DOI PMC

Chong J., Wishart D.S., Xia J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019;68 doi: 10.1002/cpbi.86. PubMed DOI

Huber A.E., Bauerle T.L. Long-distance plant signaling pathways in response to multiple stressors: The gap in knowledge. J. Exp. Bot. 2016;67:2063–2079. doi: 10.1093/jxb/erw099. PubMed DOI

Zwart D.C., Kim S.H. Biochar amendment increases resistance to stem lesions caused by phytophthora spp. in tree seedlings. HortScience. 2012;47:1736–1740. doi: 10.21273/HORTSCI.47.12.1736. DOI

Verslues P.E., Sharma S. Proline Metabolism and Its Implications for Plant-Environment Interaction. Arab. B. 2010;8:e0140. doi: 10.1199/tab.0140. PubMed DOI PMC

Johnová P., Skalák J., Saiz-Fernández I., Brzobohatý B. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2016;1864:916–931. doi: 10.1016/j.bbapap.2016.02.007. PubMed DOI

Lopes-Caitar V.S., Silva S.M.H., Marcelino-Guimaraes F.C. Plant Small Heat Shock Proteins and Its Interactions with Biotic Stress. Springer; Cham, Switzerland: 2016. pp. 19–39.

Maimbo M., Ohnishi K., Hikichi Y., Yoshioka H., Kiba A. Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiol. 2007;145:1588–1599. doi: 10.1104/pp.107.105353. PubMed DOI PMC

Kanzaki H., Saitoh H., Ito A., Fujisawa S., Kamoun S., Katou S., Yoshioka H., Terauchi R. Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to pseudomonas cichorii in Nicotiana benthamiana. Mol. Plant Pathol. 2003;4:383–391. doi: 10.1046/j.1364-3703.2003.00186.x. PubMed DOI

Song T., Ma Z., Shen D., Li Q., Li W., Su L., Ye T., Zhang M., Wang Y., Dou D. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters. PLoS Pathog. 2015;11:e1005348. doi: 10.1371/journal.ppat.1005348. PubMed DOI PMC

Sanchez L., Courteaux B., Hubert J., Kauffmann S., Renault J.H., Clément C., Baillieul F., Dorey S. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol. 2012;160:1630–1641. doi: 10.1104/pp.112.201913. PubMed DOI PMC

Deenamo N., Kuyyogsuy A., Khompatara K., Chanwun T., Ekchaweng K., Churngchow N. Salicylic Acid Induces Resistance in Rubber Tree against Phytophthora palmivora. Int. J. Mol. Sci. 2018;19:1883. doi: 10.3390/ijms19071883. PubMed DOI PMC

Camisón Á., Martín M.Á., Sánchez-Bel P., Flors V., Alcaide F., Morcuende D., Pinto G., Solla A. Hormone and secondary metabolite profiling in chestnut during susceptible and resistant interactions with Phytophthora cinnamomi. J. Plant Physiol. 2019;241:153030. doi: 10.1016/j.jplph.2019.153030. PubMed DOI

Lefevere H., Bauters L., Gheysen G. Salicylic Acid Biosynthesis in Plants. Front. Plant Sci. 2020;11:338. doi: 10.3389/fpls.2020.00338. PubMed DOI PMC

García-Pineda E., Benezer-Benezer M., Gutiérrez-Segundo A., Rangel-Sánchez G., Arreola-Cortés A., Castro-Mercado E. Regulation of defence responses in avocado roots infected with Phytophthora cinnamomi (Rands) Plant Soil. 2010;331:45–56. doi: 10.1007/s11104-009-0225-5. DOI

Sorokan A.V., Burhanova G.F., Maksimov I.V. Anionic peroxidase-mediated oxidative burst requirement for jasmonic acid-dependent Solanum tuberosum defence against Phytophthora infestans. Plant Pathol. 2018;67:349–357. doi: 10.1111/ppa.12743. DOI

Ullah C., Tsai C., Unsicker S.B., Xue L., Reichelt M., Gershenzon J., Hammerbacher A. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins. New Phytol. 2019;221:960–975. doi: 10.1111/nph.15396. PubMed DOI PMC

Ullah C., Unsicker S.B., Fellenberg C., Constabel C.P., Schmidt A., Gershenzon J., Hammerbacher A. Flavan-3-ols are an effective chemical defense against rust infection. Plant Physiol. 2017;175:1560–1578. doi: 10.1104/pp.17.00842. PubMed DOI PMC

Wang L., Ran L., Hou Y., Tian Q., Li C., Liu R., Fan D., Luo K. The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar. New Phytol. 2017;215:351–367. doi: 10.1111/nph.14569. PubMed DOI

Rookes J.E., Wright M.L., Cahill D.M. Elucidation of defence responses and signalling pathways induced in Arabidopsis thaliana following challenge with Phytophthora cinnamomi. Physiol. Mol. Plant Pathol. 2008;72:151–161. doi: 10.1016/j.pmpp.2008.08.005. DOI

Lazebnik J., Frago E., Dicke M., van Loon J.J.A. Phytohormone Mediation of Interactions Between Herbivores and Plant Pathogens. J. Chem. Ecol. 2014;40:730–741. doi: 10.1007/s10886-014-0480-7. PubMed DOI

Shimada T.L., Hara-Nishimura I. Leaf oil bodies are subcellular factories producing antifungal oxylipins. Curr. Opin. Plant Biol. 2015;25:145–150. doi: 10.1016/j.pbi.2015.05.019. PubMed DOI

Schuck S., Kallenbach M., Baldwin I.T., Bonaventure G. The Nicotiana attenuataGLA1 lipase controls the accumulation of Phytophthora parasitica-induced oxylipins and defensive secondary metabolites. Plant Cell Environ. 2014;37:1703–1715. doi: 10.1111/pce.12281. PubMed DOI PMC

Li Y., Liu Z., Hou H., Lei H., Zhu X., Li X., He X., Tian C. Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiol. Plant. 2013;35:3465–3475. doi: 10.1007/s11738-013-1382-y. DOI

Zhu L., Zhou Y., Li X., Zhao J., Guo N., Xing H. Metabolomics Analysis of Soybean Hypocotyls in Response to Phytophthora sojae Infection. Front. Plant Sci. 2018;9:1530. doi: 10.3389/fpls.2018.01530. PubMed DOI PMC

Scharte J., Schön H., Weis E. Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ. 2005;28:1421–1435. doi: 10.1111/j.1365-3040.2005.01380.x. DOI

Morkunas I., Ratajczak L. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol. Plant. 2014;36:1607–1619. doi: 10.1007/s11738-014-1559-z. DOI

Slewinski T.L. Diverse Functional Roles of Monosaccharide Transporters and their Homologs in Vascular Plants: A Physiological Perspective. Mol. Plant. 2011;4:641–662. doi: 10.1093/mp/ssr051. PubMed DOI

Puzanskiy R.K., Yemelyanov V.V., Shishova M.F. Metabolomics as a modern approach for the investigation of potato plant adaptation to biotic and abiotic stress factors. Sel’skokhozyaistvennaya Biol. 2018;53:15–28. doi: 10.15389/agrobiology.2018.1.15eng. DOI

Draper J., Rasmussen S., Zubair H. Annual Plant Reviews online. John Wiley & Sons, Ltd.; Chichester, UK: 2018. Metabolite Analysis and Metabolomics in the Study of Biotrophic Interactions between Plants and Microbes; pp. 25–59.

Coelho A.C., Horta M., Neves D., Cravador A. Involvement of a cinnamyl alcohol dehydrogenase of Quercus suber in the defence response to infection by Phytophthora cinnamomi. Physiol. Mol. Plant Pathol. 2006;69:62–72. doi: 10.1016/j.pmpp.2007.01.001. DOI

Mierziak J., Kostyn K., Kulma A. Flavonoids as important molecules of plant interactions with the environment. Molecules. 2014;19:16240–16265. doi: 10.3390/molecules191016240. PubMed DOI PMC

Treutter D. Significance of flavonoids in plant resistance: A review. Environ. Chem. Lett. 2006;4:147–157. doi: 10.1007/s10311-006-0068-8. DOI

Kim H., O’Connell R., Maekawa-Yoshikawa M., Uemura T., Neumann U., Schulze-Lefert P. The powdery mildew resistance protein RPW8.2 is carried on VAMP721/722 vesicles to the extrahaustorial membrane of haustorial complexes. Plant J. 2014;79:835–847. doi: 10.1111/tpj.12591. PubMed DOI

Viktorova J., Krasny L., Kamlar M., Novakova M., Mackova M., Macek T. Osmotin, a Pathogenesis-Related Protein. Curr. Protein Pept. Sci. 2012;13:672–681. doi: 10.2174/138920312804142129. PubMed DOI

Jalil S.U., Mishra M., Ansari M.I. Current view on chitinase for plant defence. Trends Biosci. 2015;8:6733–6743.

Xiao C., Gao J., Zhang Y., Wang Z., Zhang D., Chen Q., Ye X., Xu Y., Yang G., Yan L., et al. Quantitative proteomics of potato leaves infected with phytophthora infestans provides insights into coordinated and altered protein expression during early and late disease stages. Int. J. Mol. Sci. 2019;20:136. doi: 10.3390/ijms20010136. PubMed DOI PMC

Santos C., Duarte S., Tedesco S., Fevereiro P., Costa R.L. Expression Profiling of Castanea Genes during Resistant and Susceptible Interactions with the Oomycete Pathogen Phytophthora cinnamomi Reveal Possible Mechanisms of Immunity. Front. Plant Sci. 2017;8:515. doi: 10.3389/fpls.2017.00515. PubMed DOI PMC

Hloušková P., Černý M., Kořínková N., Luklová M., Minguet E.G., Brzobohatý B., Galuszka P., Bergougnoux V. Affinity chromatography revealed 14-3-3 interactome of tomato (Solanum lycopersicum L.) during blue light-induced de-etiolation. J. Proteomics. 2019;193:44–61. doi: 10.1016/j.jprot.2018.12.017. PubMed DOI

Hallmark H.T., Černý M., Brzobohatý B., Rashotte A.M. trans-Zeatin-N-glucosides have biological activity in Arabidopsis thaliana. PLoS ONE. 2020;15:e0232762. doi: 10.1371/journal.pone.0232762. PubMed DOI PMC

Dorfer V., Pichler P., Stranzl T., Stadlmann J., Taus T., Winkler S., Mechtler K. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 2014;13:3679–3684. doi: 10.1021/pr500202e. PubMed DOI PMC

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Cerna H., Černý M., Habánová H., Šafářová D., Abushamsiya K., Navrátil M., Brzobohatý B. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV) J. Proteomics. 2017;153:78–88. doi: 10.1016/j.jprot.2016.05.018. PubMed DOI

Salem M.A., Yoshida T., Perez de Souza L., Alseekh S., Bajdzienko K., Fernie A.R., Giavalisco P. An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under water-deficit stress. Plant J. 2020;103:tpj.14800. doi: 10.1111/tpj.14800. PubMed DOI

Pino L.K., Searle B.C., Bollinger J.G., Nunn B., MacLean B., MacCoss M.J. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 2020;39:229–244. doi: 10.1002/mas.21540. PubMed DOI PMC

Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., Fridman W.H., Pagès F., Trajanoski Z., Galon J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–1093. doi: 10.1093/bioinformatics/btp101. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Molecular Mechanisms Underlying Flax (Linum usitatissimum L.) Tolerance to Cadmium: A Case Study of Proteome and Metabolome of Four Different Flax Genotypes

. 2022 Oct 31 ; 11 (21) : . [epub] 20221031

Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar

. 2022 ; 13 () : 1018272. [epub] 20221013

Interaction With Fungi Promotes the Accumulation of Specific Defense Molecules in Orchid Tubers and May Increase the Value of Tubers for Biotechnological and Medicinal Applications: The Case Study of Interaction Between Dactylorhiza sp. and Tulasnella calospora

. 2022 ; 13 () : 757852. [epub] 20220630

Differences in the Proteomic and Metabolomic Response of Quercus suber and Quercus variabilis During the Early Stages of Phytophthora cinnamomi Infection

. 2022 ; 13 () : 894533. [epub] 20220613

Regulation of heat shock proteins 70 and their role in plant immunity

. 2022 Apr 05 ; 73 (7) : 1894-1909.

Metabolomic and Physiological Changes in Fagus sylvatica Seedlings Infected with Phytophthora plurivora and the A1 and A2 Mating Types of P. ×cambivora

. 2022 Mar 14 ; 8 (3) : . [epub] 20220314

The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans

. 2021 Dec 25 ; 11 (1) : . [epub] 20211225

Split-root systems: detailed methodology, alternative applications, and implications at leaf proteome level

. 2021 Jan 09 ; 17 (1) : 7. [epub] 20210109

Peptide-Based Identification of Phytophthora Isolates and Phytophthora Detection in Planta

. 2020 Dec 12 ; 21 (24) : . [epub] 20201212

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...