Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar

. 2022 ; 13 () : 1018272. [epub] 20221013

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36325556

Poplars are among the fastest-growing trees and significant resources in agriculture and forestry. However, rapid growth requires a large water consumption, and irrigation water provides a natural means for pathogen spread. That includes members of Phytophthora spp. that have proven to be a global enemy to forests. With the known adaptability to new hosts, it is only a matter of time for more aggressive Phytophthora species to become a threat to poplar forests and plantations. Here, the effects of artificial inoculation with two different representatives of aggressive species (P. cactorum and P. plurivora) were analyzed in the proteome of the Phytophthora-tolerant hybrid poplar clone T-14 [Populus tremula L. 70 × (Populus × canescens (Ait.) Sm. 23)]. Wood microcore samples were collected at the active necrosis borders to provide insight into the molecular processes underlying the observed tolerance to Phytophthora. The analysis revealed the impact of Phytophthora on poplar primary and secondary metabolism, including carbohydrate-active enzymes, amino acid biosynthesis, phenolic metabolism, and lipid metabolism, all of which were confirmed by consecutive metabolome and lipidome profiling. Modulations of enzymes indicating systemic response were confirmed by the analysis of leaf proteome, and sampling of wood microcores in distal locations revealed proteins with abundance correlating with proximity to the infection, including germin-like proteins, components of proteosynthesis, glutamate carboxypeptidase, and an enzyme that likely promotes anthocyanin stability. Finally, the identified Phytophthora-responsive proteins were compared to those previously found in trees with compromised defense against Phytophthora, namely, Quercus spp. and Castanea sativa. That provided a subset of candidate markers of Phytophthora tolerance, including certain ribosomal proteins, auxin metabolism enzymes, dioxygenases, polyphenol oxidases, trehalose-phosphate synthase, mannose-1-phosphate guanylyltransferase, and rhamnose biosynthetic enzymes. In summary, this analysis provided the first insight into the molecular mechanisms of hybrid poplar defense against Phytophthora and identified prospective targets for improving Phytophthora tolerance in trees.

Zobrazit více v PubMed

Ancona V., Caracciolo A. B., Campanale C., Rascio I., Grenni P., Di Lenola M., et al. . (2019). Heavy metal phytoremediation of a poplar clone in a contaminated soil in southern Italy. J. Chem. Technol. Biotechnol. 95, 940–949. doi: 10.1002/jctb.6145 DOI

Araji S., Grammer T. A., Gertzen R., Anderson S. D., Mikulic-Petkovsek M., Veberic R., et al. . (2014). Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol. 164, 1191–1203. doi: 10.1104/pp.113.228593 PubMed DOI PMC

Barra Caracciolo A., Grenni P., Garbini G. L., Rolando L., Campanale C., Aimola G., et al. . (2020). Characterization of the belowground microbial community in a poplar-phytoremediation strategy of a multi-contaminated soil. Front. Microbiol. 11. doi: 10.3389/fmicb.2020.02073 PubMed DOI PMC

Berezovska D., Oszako T., Malewski T., Stocki M., Marozau A., Stocka N., et al. . (2021). Effect of defoliation on the defense reactions of silver birch (Betula pendula) infected with phytophthora plurivora. Forests 12, 910. doi: 10.3390/f12070910 DOI

Berka M., Greplová M., Saiz-Fernández I., Novák J., Luklová M., Zelená P., et al. . (2020. a). Peptide-based identification of phytophthora isolates and phytophthora detection in planta. Int. J. Mol. Sci. 21, 1–17. doi: 10.3390/ijms21249463 PubMed DOI PMC

Berka M., Kopecká R., Berková V., Brzobohatý B., Černý M. (2022). Regulation of heat shock proteins 70 and their role in plant immunity. J. Exp. Bot. 73, 1894–1909. doi: 10.1093/jxb/erab549 PubMed DOI PMC

Berka M., Luklová M., Dufková H., Malých V., Novák J., Saiz-Fernández I., et al. . (2020. b). Barley root proteome and metabolome in response to cytokinin and abiotic stimuli. Front. Plant Sci. 590337 11. doi: 10.3389/FPLS.2020.590337 PubMed DOI PMC

Biselli C., Vietto L., Rosso L., Cattivelli L., Nervo G., Fricano A. (2022). Advanced breeding for biotic stress resistance in poplar. Plants 11, 2032. doi: 10.3390/plants11152032 PubMed DOI PMC

Castro-Rodríguez V., García-Gutiérrez A., Canales J., Cañas R. A., Kirby E. G., Avila C., et al. . (2016). Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy. Plant Biotechnol. J. 14, 299–312. doi: 10.1111/pbi.12384 PubMed DOI

Cerna H., Černý M., Habánová H., Šafářová D., Abushamsiya K., Navrátil M., et al. . (2017). Proteomics offers insight to the mechanism behind pisum sativum l. response to pea seed-borne mosaic virus (PSbMV). J. Proteomics 153, 78–88. doi: 10.1016/j.jprot.2016.05.018 PubMed DOI

Černý M., Habánová H., Berka M., Luklová M., Brzobohatý B. (2018). Hydrogen peroxide: Its role in plant biology and crosstalk with signalling networks. Int. J. Mol. Sci. 19, 2812. doi: 10.3390/ijms19092812 PubMed DOI PMC

Černý M., Novák J., Habánová H., Cerna H., Brzobohatý B. (2016). Role of the proteome in phytohormonal signaling. Biochim. Biophys. Acta - Proteins Proteomics 1864, 1003–1015. doi: 10.1016/j.bbapap.2015.12.008 PubMed DOI

Cheng Q., Li N., Dong L., Zhang D., Fan S., Jiang L., et al. . (2015). Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean. Front. Plant Sci. 6, 1024. doi: 10.3389/fpls.2015.01024 PubMed DOI PMC

Dalla Venezia N., Vincent A., Marcel V., Catez F., Diaz J.-J. (2019). Emerging role of eukaryote ribosomes in translational control. Int. J. Mol. Sci. 20, 1226. doi: 10.3390/ijms20051226 PubMed DOI PMC

D’Souza K. D., Scott P., Williams N., Bellgard S. E., Bader M. K.-F. (2021). Early infection by phytophthora agathidicida up-regulates photosynthetic activity in agathis australis seedlings. For. Pathol. 51, e12680. doi: 10.1111/efp.12680 DOI

Dufková H., Berka M., Greplová M., Shejbalová Š., Hampejsová R., Luklová M., et al. . (2022). The omics hunt for novel molecular markers of resistance to Phytophthora infestans. Plants 11, 61. doi: 10.3390/plants11010061 PubMed DOI PMC

Dufková H., Berka M., Luklová M., Rashotte A. M., Brzobohatý B., Černý M. (2019). Eggplant germination is promoted by hydrogen peroxide and temperature in an independent but overlapping manner. Molecules 24, 4270. doi: 10.3390/molecules24234270 PubMed DOI PMC

Ďurkovič J., Bubeníková T., Gužmerová A., Fleischer P., Kurjak D., Čaňová I., et al. . (2021). Effects of phytophthora inoculations on photosynthetic behaviour and induced defence responses of plant volatiles in field-grown hybrid poplar tolerant to bark canker disease. J. Fungi 7, 969. doi: 10.3390/jof7110969 PubMed DOI PMC

Ďurkovič J., Husárová H., Javoříková L., Čaňová I., Šuleková M., Kardošová M., et al. . (2017). Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs. Plant Physiol. Biochem. 118, 449–459. doi: 10.1016/j.plaphy.2017.07.012 PubMed DOI

Ďurkovič J., Kačík F., Husárová H., Mamoňová M., Čaňová I. (2020). Cell wall compositional and vascular traits of hybrid poplar wood in micropropagated plants and plants propagated from root cuttings. New For. 51, 119–135. doi: 10.1007/s11056-019-09723-y DOI

Food and Agriculture Organization of United Nations. (2016). International Poplar Commission: Poplars and other fast-growing trees – renewable resources for future green economies. Synthesis of Country Progress Reports. Berlin, Germany: 51. Available at: https://www.fao.org/forestry/45094-08e1e5bf441bc41bb139e66da0915f2c.pdf

Fernandez O., Béthencourt L., Quero A., Sangwan R. S., Clément C. (2010). Trehalose and plant stress responses: friend or foe? Trends Plant Sci. 15, 409–417. doi: 10.1016/j.tplants.2010.04.004 PubMed DOI

Ge S. X., Jung D., Yao R. (2020). ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629. doi: 10.1093/bioinformatics/btz931 PubMed DOI PMC

Hartmann M., Zeier J. (2018). L -lysine metabolism to N -hydroxypipecolic acid: an integral immune-activating pathway in plants. Plant J. 96, 5–21. doi: 10.1111/tpj.14037 PubMed DOI

He D., Wan X., Wang B., Wan X., Lu M. (2018). Poplars and willows, sustaining livelihoods in urban and periurban forests in China (Rome: FAO; ).

Hloušková P., Černý M., Kořínková N., Luklová M., Minguet E. G., Brzobohatý B., et al. . (2019). Affinity chromatography revealed 14-3-3 interactome of tomato (Solanum lycopersicum l.) during blue light-induced de-etiolation. J. Proteomics 193, 44–61. doi: 10.1016/j.jprot.2018.12.017 PubMed DOI

Isebrands J. G., Richardson J. (2014). Poplars and willows: trees for society and the environment (Wallingford: CABI; ). doi: 10.1079/9781780641089.0000 DOI

Ji Y., Zhou G., Li Z., Wang S., Zhou H., Song X. (2020). Triggers of widespread dieback and mortality of poplar (Populus spp.) plantations across northern China. J. Arid Environ. 174, 104076. doi: 10.1016/j.jaridenv.2019.104076 DOI

Jung T., Pérez-Sierra A., Durán A., Jung M. H., Balci Y., Scanu B. (2018). Canker and decline diseases caused by soil- and airborne phytophthora species in forests and woodlands. Persoonia - Mol. Phylogeny Evol. Fungi 40, 182–220. doi: 10.3767/persoonia.2018.40.08 PubMed DOI PMC

Keča N., Milenković I., Lj K. (2016). Mycological complex of poplars in Serbia. J. For. Sci. 61, 169–174. doi: 10.17221/13/2014-JFS DOI

Kouam J. C. D., Ndjaga J. M., Akoa S. P., Ondobo M. L., Onomo P. E., Djocgoue P. F., et al. . (2022). Flavan-3-ol and flavonol analysis in healthy and infected parents and progenies of cocoa leaves (Theobroma cacao l.) with phytophthora megakarya bras. and grif. Trop . Plant Pathol. doi: 10.1007/s40858-022-00521-0 DOI

Kwaśna H., Szewczyk W., Baranowska M., Gallas E., Wiśniewska M., Behnke-Borowczyk J. (2021). Mycobiota associated with the vascular wilt of poplar. Plants 10, 892. doi: 10.3390/plants10050892 PubMed DOI PMC

Lane B. G., Cuming A. C., Fregeau J., Carpita N. C., Hurkman W. J., Bernier F., et al. . (1992). Germin isoforms are discrete temporal markers of wheat development. pseudogermin is a uniquely thermostable water-soluble oligomeric protein in ungerminated embryos and like germin in germinated embryos, it is incorporated into cell walls. Eur. J. Biochem. 209, 961–969. doi: 10.1111/j.1432-1033.1992.tb17369.x PubMed DOI

Lee M. W., Seo R., Lee Y. J., Bae J. H., Park J.-K., Yoon J.-H., et al. . (2016). ALTERED MERISTEM PROGRAM1 has conflicting effects on the tolerance to heat shock and symptom development after pseudomonas syringae infection. Biochem. Biophys. Res. Commun. 480, 296–301. doi: 10.1016/j.bbrc.2016.10.025 PubMed DOI

Liebermeister W., Noor E., Flamholz A., Davidi D., Bernhardt J., Milo R. (2014). Visual account of protein investment in cellular functions. Proc. Natl. Acad. Sci. 111, 8488–8493. doi: 10.1073/pnas.1314810111 PubMed DOI PMC

Li P., Liu W., Zhang Y., Xing J., Li J., Feng J., et al. . (2019). Fungal canker pathogens trigger carbon starvation by inhibiting carbon metabolism in poplar stems. Sci. Rep. 9, 10111. doi: 10.1038/s41598-019-46635-5 PubMed DOI PMC

Lukowitz W., Nickle T. C., Meinke D. W., Last R. L., Conklin P. L., Somerville C. R. (2001). Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of n-linked glycosylation for cellulose biosynthesis. Proc. Natl. Acad. Sci. 98, 2262–2267. doi: 10.1073/pnas.051625798 PubMed DOI PMC

Maleki S. S., Mohammadi K., Movahedi A., Wu F., Ji K. S. (2020). Increase in cell wall thickening and biomass production by overexpression of PmCesA2 in poplar. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00110 PubMed DOI PMC

Martínez Noël G. M. A., Madrid E. A., Bottini R., Lamattina L. (2001). Indole acetic acid attenuates disease severity in potato-phytophthora infestans interaction and inhibits the pathogen growth in vitro . Plant Physiol. Biochem. 39, 815–823. doi: 10.1016/S0981-9428(01)01298-0 DOI

Mierziak J., Kostyn K., Kulma A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules 19, 16240–16265. doi: 10.3390/molecules191016240 PubMed DOI PMC

Milenković I., Keča N., Karadžić D., Radulović Z., Nowakowska J., Oszako T., et al. . (2018). Isolation and pathogenicity of phytophthora species from poplar plantations in Serbia. Forests 9, 330. doi: 10.3390/f9060330 DOI

Monson R. K., Winkler B., Rosenstiel T. N., Block K., Merl-Pham J., Strauss S. H., et al. . (2020). High productivity in hybrid-poplar plantations without isoprene emission to the atmosphere. Proc. Natl. Acad. Sci. 117, 1596–1605. doi: 10.1073/pnas.1912327117 PubMed DOI PMC

Nakamura H., Wakita S., Suganami A., Tamura Y., Hanada K., Murayama T. (2010). Modulation of the activity of cytosolic phospholipase A2α (cPLA2α) by cellular sphingolipids and inhibition of cPLA2α by sphingomyelin. J. Lipid Res. 51, 720–728. doi: 10.1194/jlr.M002428 PubMed DOI PMC

Nicolescu V.-N., Rédei K., Mason W. L., Vor T., Pöetzelsberger E., Bastien J.-C., et al. . (2020). Ecology, growth and management of black locust (Robinia pseudoacacia l.), a non-native species integrated into European forests. J. For. Res. 31, 1081–1101. doi: 10.1007/s11676-020-01116-8 DOI

Nolte H., MacVicar T. D., Tellkamp F., Krüger M. (2018). Instant clue: A software suite for interactive data visualization and analysis. Sci. Rep. 8, 12648. doi: 10.1038/s41598-018-31154-6 PubMed DOI PMC

Pagán I., García-Arenal F. (2018). Tolerance to plant pathogens: Theory and experimental evidence. Int. J. Mol. Sci. 19, 810. doi: 10.3390/ijms19030810 PubMed DOI PMC

Pánek M., Fér T., Mráček J., Tomšovský M. (2016). Evolutionary relationships within the phytophthora cactorum species complex in Europe. Fungal Biol. 120, 836–851. doi: 10.1016/j.funbio.2016.03.006 PubMed DOI

Pang Z., Chong J., Zhou G., De Lima Morais D. A., Chang L., Barrette M., et al. . (2021). MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396. doi: 10.1093/nar/gkab382 PubMed DOI PMC

Pascual J., Cañal M. J., Escandón M., Meijón M., Weckwerth W., Valledor L. (2017). Integrated physiological, proteomic, and metabolomic analysis of ultra violet (UV) stress responses and adaptation mechanisms in pinus radiata. Mol. Cell. Proteomics 16, 485–501. doi: 10.1074/mcp.M116.059436 PubMed DOI PMC

Paul M. J., Gonzalez-Uriarte A., Griffiths C. A., Hassani-Pak K. (2018). The role of trehalose 6-phosphate in crop yield and resilience. Plant Physiol. 177, 12–23. doi: 10.1104/pp.17.01634 PubMed DOI PMC

Pavet V. (2005). Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol. 139, 1291–1303. doi: 10.1104/pp.105.067686 PubMed DOI PMC

Pei Y., Li X., Zhu Y., Ge X., Sun Y., Liu N., et al. . (2019). GhABP19, a novel germin-like protein from gossypium hirsutum, plays an important role in the regulation of resistance to Verticillium and Fusarium wilt pathogens. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00583 PubMed DOI PMC

Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., et al. . (2022). The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552. doi: 10.1093/nar/gkab1038 PubMed DOI PMC

Pino L. K., Searle B. C., Bollinger J. G., Nunn B., MacLean B., MacCoss M. J. (2020). The skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39, 229–244. doi: 10.1002/mas.21540 PubMed DOI PMC

Piovesan G., Biondi F. (2021). On tree longevity. New Phytol. 231, 1318–1337. doi: 10.1111/nph.17148 PubMed DOI

Rebola-Lichtenberg J., Schall P., Ammer C. (2021). Biomass production in mixed short rotation coppice with poplar-hybrids ( Populus spp.) and black locust (Robinia pseudoacacia l.). GCB Bioenergy 13, 1924–1938. doi: 10.1111/gcbb.12895 DOI

Saiz-Fernández I., Đorđević B., Kerchev P., Černý M., Jung T., Berka M., et al. . (2022). Differences in the proteomic and metabolomic response of Quercus suber and Quercus variabilis during the early stages of phytophthora cinnamomi infection. Front. Microbiol. 13. doi: 10.3389/fmicb.2022.894533 PubMed DOI PMC

Saiz-Fernández I., Milenković I., Berka M., Černý M., Tomšovský M., Brzobohatý B., et al. . (2020). Integrated proteomic and metabolomic profiling of Phytophthora cinnamomi attack on sweet chestnut (Castanea sativa) reveals distinct molecular reprogramming proximal to the infection site and away from it. Int. J. Mol. Sci. 21, 8525. doi: 10.3390/ijms21228525 PubMed DOI PMC

Singh D. K., Maximova S. N., Jensen P. J., Lehman B. L., Ngugi H. K., McNellis T. W. (2010). FIBRILLIN4 is required for plastoglobule development and stress resistance in apple and arabidopsis. Plant Physiol. 154, 1281–1293. doi: 10.1104/pp.110.164095 PubMed DOI PMC

Sixto H. (2005). Response to sodium chloride in different species and clones of genus populus l. Forestry 78, 93–104. doi: 10.1093/forestry/cpi009 DOI

Sun L., Dong S., Ge Y., Fonseca J. P., Robinson Z. T., Mysore K. S., et al. . (2019). DiVenn: An interactive and integrated web-based visualization tool for comparing gene lists. Front. Genet. 10. doi: 10.3389/fgene.2019.00421 PubMed DOI PMC

Suzuki H., Nakayama T., Yonekura-Sakakibara K., Fukui Y., Nakamura N., Yamaguchi M., et al. . (2002). cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme A:Anthocyanidin 3- O -Glucoside-6"- O -malonyltransferase from dahlia flowers. Plant Physiol. 130, 2142–2151. doi: 10.1104/pp.010447 PubMed DOI PMC

Szklarczyk D., Gable A. L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., et al. . (2019). STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613. doi: 10.1093/nar/gky1131 PubMed DOI PMC

Taylor C. R., Grünwald N. J. (2021). Growth, infection and aggressiveness of Phytophthora pathogens on rhododendron leaves. CABI Agric. Biosci. 2, 26. doi: 10.1186/s43170-021-00048-5 DOI

Tkaczyk M., Sikora K., Galko J., Kunca A., Milenković I. (2020). Isolation and pathogenicity of phytophthora species from sessile oak (Quercus petraea (Matt.) liebl.) stands in Slovakia. For. Pathol. 50, e12632. doi: 10.1111/efp.12632 DOI

Tozzi E. S., Easlon H. M., Richards J. H. (2013). Interactive effects of water, light and heat stress on photosynthesis in fremont cottonwood. Plant Cell Environ. 36, 1423–1434. doi: 10.1111/pce.12070 PubMed DOI

Treutter D. (2006). Significance of flavonoids in plant resistance: a review. Environ. Chem. Lett. 4, 147–157. doi: 10.1007/s10311-006-0068-8 DOI

Tuskan G. A., DiFazio S., Jansson S., Bohlmann J., Grigoriev I., Hellsten U., et al. . (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Sci. 313, 1596–1604. doi: 10.1126/science.1128691 PubMed DOI

Valledor L., Guerrero S., García-Campa L., Meijón M. (2021). Proteometabolomic characterization of apical bud maturation in pinus pinaster. Tree Physiol. 41, 508–521. doi: 10.1093/treephys/tpaa111 PubMed DOI

Vetukuri R. R., Tripathy S., Malar C M., Panda A., Kushwaha S. K., Chawade A., et al. . (2018). Draft genome sequence for the tree pathogen phytophthora plurivora. Genome Biol. Evol. 10, 2432–2442. doi: 10.1093/gbe/evy162 PubMed DOI PMC

Vicente J., Cascón T., Vicedo B., García-Agustín P., Hamberg M., Castresana C. (2012). Role of 9-lipoxygenase and α-dioxygenase oxylipin pathways as modulators of local and systemic defense. Mol. Plant 5, 914–928. doi: 10.1093/mp/ssr105 PubMed DOI

Wang M., Zhang L., Zhang Z., Li M., Wang D., Zhang X., et al. . (2020). Phylogenomics of the genus Populus reveals extensive interspecific gene flow and balancing selection. New Phytol. 225, 1370–1382. doi: 10.1016/j.foreco.2021.119330 PubMed DOI

Xi B., Clothier B., Coleman M., Duan J., Hu W., Li D., et al. . (2021). Irrigation management in poplar (Populus spp.) plantations: A review. For. Ecol. Manage. 494, 119330. doi: 10.1016/j.foreco.2021.119330 DOI

Xiong W., Lan T., Mo B. (2021). Extraribosomal functions of cytosolic ribosomal proteins in plants. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.607157 PubMed DOI PMC

Yang M., Duan S., Mei X., Huang H., Chen W., Liu Y., et al. . (2018). The Phytophthora cactorum genome provides insights into the adaptation to host defense compounds and fungicides. Sci. Rep. 8, 6534. doi: 10.1038/s41598-018-24939-2 PubMed DOI PMC

Yang X., Zhao T., Rao P., Gao K., Yang X., Chen Z., et al. . (2019). Transcriptome profiling of Populus tomentosa under cold stress. Ind. Crops Prod. 135, 283–293. doi: 10.1016/j.indcrop.2019.04.056 DOI

Yonekura-Sakakibara K., Tohge T., Matsuda F., Nakabayashi R., Takayama H., Niida R., et al. . (2008). Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene–metabolite correlations in arabidopsis. Plant Cell 20, 2160–2176. doi: 10.1105/tpc.108.058040 PubMed DOI PMC

Yuan B., Yang Y., Fan P., Liu J., Xing H., Liu Y., et al. . (2021). Genome-wide identification and characterization of germin and germin-like proteins (GLPs) and their response under powdery mildew stress in wheat (Triticum aestivum l.). Plant Mol. Biol. Rep. 39, 821–832. doi: 10.1007/s11105-021-01291-w DOI

Zavaliev R., Levy A., Gera A., Epel B. L. (2013). Subcellular dynamics and role of Arabidopsis β-1,3-Glucanases in cell-to-Cell movement of tobamoviruses. Mol. Plant-Microbe Interact. 26, 1016–1030. doi: 10.1094/MPMI-03-13-0062-R PubMed DOI

Zeier J. (2021). Metabolic regulation of systemic acquired resistance. Curr. Opin. Plant Biol. 62, 102050. doi: 10.1016/j.pbi.2021.102050 PubMed DOI

Zhang X., Liu L., Chen B., Qin Z., Xiao Y., Zhang Y., et al. . (2019). Progress in understanding the physiological and molecular responses of Populus to salt stress. Int. J. Mol. Sci. 20, 1312. doi: 10.3390/ijms20061312 PubMed DOI PMC

Zhang Y., Wang X., Chang X., Sun M., Zhang Y., Li W., et al. . (2018). Overexpression of germin-like protein GmGLP10 enhances resistance to Sclerotinia sclerotiorum in transgenic tobacco. Biochem. Biophys. Res. Commun. 497, 160–166. doi: 10.1016/j.bbrc.2018.02.046 PubMed DOI

Zhou G., Ewald J., Xia J. (2021). OmicsAnalyst: a comprehensive web-based platform for visual analytics of multi-omics data. Nucleic Acids Res. 49, W476–W482. doi: 10.1093/nar/gkab394 PubMed DOI PMC

Zhu L., Zhou Y., Li X., Zhao J., Guo N., Xing H. (2018). Metabolomics analysis of soybean hypocotyls in response to Phytophthora sojae infection. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01530 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...