Split-root systems: detailed methodology, alternative applications, and implications at leaf proteome level
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000453
European Regional Development Fund
LQ1601
CEITEC 2020
PubMed
33422104
PubMed Central
PMC7797125
DOI
10.1186/s13007-020-00706-1
PII: 10.1186/s13007-020-00706-1
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, Drought stress, Phytohormones, Proteomics, Split-root systems,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Split-root systems (SRS) have many applications in plant sciences, but their implementation, depending on the experimental design, can be difficult and time-consuming. Additionally, the system is not exempt from limitations, since the time required for the establishment of the SRS imposes a limit to how early in plant development experiments can be performed. Here, we optimized and explained in detail a method for establishing a SRS in young Arabidopsis thaliana seedlings, both in vitro and in soil. RESULTS: We found that the partial de-rooting minimized the recovery time compared to total de-rooting, thus allowing the establishment of the split-root system in younger plants. Analysis of changes in the Arabidopsis leaf proteome following the de-rooting procedure highlighted the distinct metabolic alterations that totally and partially de-rooted plants undergo during the healing process. This system was also validated for its use in drought experiments, as it offers a way to apply water-soluble compounds to plants subjected to drought stress. By growing plants in a split-root system with both halves being water-deprived, it is possible to apply the required compound to one half of the root system, which can be cut from the main plant once the compound has been absorbed, thus minimizing rehydration and maintaining drought conditions. CONCLUSIONS: Partial de-rooting is the suggested method for obtaining split-root systems in small plants like Arabidopsis thaliana, as growth parameters, survival rate, and proteomic analysis suggest that is a less stressful procedure than total de-rooting, leading to a final rosette area much closer to that of uncut plants. Additionally, we provide evidence that split root-systems can be used in drought experiments where water-soluble compounds are applied with minimal effects of rehydration.
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
Zobrazit více v PubMed
Larrainzar E, Gil-Quintana E, Arrese-Igor C, González EM, Marino D. Split-root systems applied to the study of the legume-rhizobial symbiosis: what have we learned? J Integr Plant Biol. 2014;56(12):1118–1124. PubMed
Long EM. The effect of salt additions to the substrate on intake of water and nutrients by roots of approach-grafted tomato plants. Am J Bot. 1943;30(8):594–601.
Gallardo M, Turner NC, Ludwig C. Water relations, gas exchange and abscisic acid content of Lupinus cosentinii leaves in response to drying different proportions of the root system. J Exp Bot. 1994;45(7):909–918.
Puértolas J, Conesa MR, Ballester C, Dodd IC. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying. J Exp Bot. 2015;66(8):2325–2334. PubMed PMC
Saradadevi R, Bramley H, Siddique KHM, Edwards E, Palta JA. Contrasting stomatal regulation and leaf ABA concentrations in wheat genotypes when split root systems were exposed to terminal drought. F Crop Res. 2014;165:5–14. https://www.sciencedirect.com/science/article/pii/S0378429014001798.
Marino D, Frendo P, Ladrera R, Zabalza A, Puppo A, Arrese-Igor C, González EM. Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol. 2007;143(4):1968–1974. PubMed PMC
Liu J, Han L, Chen F, Bao J, Zhang F, Mi G. Microarray analysis reveals early responsive genes possibly involved in localized nitrate stimulation of lateral root development in maize (Zea mays L.) Plant Sci. 2008;175(3):272–282.
Kassaw TK, Frugoli JA. Simple and efficient methods to generate split roots and grafted plants useful for long-distance signaling studies in Medicago truncatula and other small plants. Plant Methods. 2012;8(1):38. PubMed PMC
Gansel X, Muños S, Tillard P, Gojon A. Differential regulation of the NO3- and NH4 + transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J. 2001;26(2):143–155. PubMed
Lequeux H, Hermans C, Lutts S, Verbruggen N. Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem. 2010;48(8):673–82. https://www.sciencedirect.com/science/article/pii/S0981942810001178. PubMed
Dodd IC. Soil moisture heterogeneity during deficit irrigation alters root-to-shoot signalling of abscisic acid. Funct Plant Biol. 2007;34(5):439. http://www.publish.csiro.au/?paper=FP07009. PubMed
Li B, Wang Y, Zhang Z, Wang B, Eneji AE, Duan L, Li Z, Tian X. Cotton shoot plays a major role in mediating senescence induced by potassium deficiency. J Plant Physiol. 2012;169(4):327–335. PubMed
Jeschke WD, Wolf O. External potassium supply is not required for root growth in saline conditions: experiments with Ricinus communis L. grown in a reciprocal split-root system. J Exp Bot. 1988;39(9):1149–1167.
Suzuki A, Hara H, Kinoue T, Abe M, Uchiumi T, Kucho K, Higashi S, Hirsch AM, Arima S. Split-root study of autoregulation of nodulation in the model legume Lotus japonicus. J Plant Res. 2008;121(2):245–249. PubMed
Matsuoka K, Sugawara E, Aoki R, Takuma K, Terao-Morita M, Satoh S, Asahina M. Differential cellular control by cotyledon-derived phytohormones involved in graft reunion of Arabidopsis Hypocotyls. Plant Cell Physiol. 2016;57(12):2620–2631. PubMed
Wang J, Jiang L, Wu R. Plant grafting: how genetic exchange promotes vascular reconnection. New Phytol. 2017;214(1):56–65. PubMed
Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 2011;11(1):163. PubMed PMC
Luo J, Tang S, Peng X, Yan X, Zeng X, Li J, Li X, Wu G. Elucidation of cross-talk and specificity of early response mechanisms to salt and PEG-simulated drought stresses in Brassica napus using comparative proteomic analysis. PLoS ONE. 2015;10(10):e0138974. PubMed PMC
Yun KY, Park MR, Mohanty B, Herath V, Xu F, Mauleon R, Wijaya E, Bajic VB, Bruskiewich R, de los Reyes BG. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol. 2010;10(1):16. PubMed PMC
Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 2007;50(2):347–363. PubMed
Heil M, Ibarra-Laclette E, Adame-Álvarez RM, Martínez O, Ramirez-Chávez E, Molina-Torres J, Herrera-Estrella L. How plants sense wounds: damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling. PLoS ONE. 2012;7(2):e30537. PubMed PMC
Nabity PD, Zavala JA, DeLucia EH. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann Bot. 2009;103(4):655–663. PubMed PMC
Schmidt L, Hummel GM, Thiele B, Schurr U, Thorpe MR. Leaf wounding or simulated herbivory in young N. attenuata plants reduces carbon delivery to roots and root tips. Planta. 2015;241(4):917–928. PubMed
Reymond P, Weber H, Damond M, Farmer EE. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell. 2000;12(5):707–720. PubMed PMC
Savatin DV, Gramegna G, Modesti V, Cervone F. Wounding in the plant tissue: the defense of a dangerous passage. Front Plant Sci. 2014;5:470. PubMed PMC
Johnson SN, Erb M, Hartley SE. Roots under attack: contrasting plant responses to below- and aboveground insect herbivory. New Phytol. 2016;210(2):413–418. PubMed
Li Q, Krauss MR, Hempfling WP. Wounding of root or basal stalk prior to harvest affects pre-harvest antioxidant accumulation and tobacco-specific nitrosamine formation during air curing of burley tobacco (Nicotiana tabacum L.) J Agron Crop Sci. 2006;192(4):267–277.
Sack L, Holbrook NM. Leaf Hydraulics. Annu Rev Plant Biol. 2006;57(1):361–381. PubMed
Johnová P, Skalák J, Saiz-Fernández I, Brzobohatý B. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective. Biochim Biophys Acta (BBA)-Proteins Proteomics. 2016;1864(8):916–31. https://www.sciencedirect.com/science/article/pii/S1570963916300127. PubMed
Cheong YH, Chang H-S, Gupta R, Wang X, Zhu T, Luan S. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 2002;129(2):661–677. PubMed PMC
Mody K, Eichenberger D, Dorn S. Stress magnitude matters: different intensities of pulsed water stress produce non-monotonic resistance responses of host plants to insect herbivores. Ecol Entomol. 2009;34(1):133–143.
Flexas J. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot. 2002;89(2):183–189. PubMed PMC
Aldea M, Hamilton JG, Resti JP, Zangerl AR, Berenbaum MR, DeLucia EH. Indirect effects of insect herbivory on leaf gas exchange in soybean. Plant, Cell Environ. 2005;28(3):402–411.
Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012;35(2):259–270. PubMed
Larbi A, Abadía A, Abadía J, Morales F. Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynth Res. 2006;89(2–3):113–126. PubMed
Schwachtje J, Baldwin IT. Why does herbivore attack reconfigure primary metabolism? Plant Physiol. 2008;146(3):845–851. PubMed PMC
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–30. https://www.sciencedirect.com/science/article/pii/S0981942810001798. PubMed
Zsigmond L, Rigó G, Szarka A, Székely G, Otvös K, Darula Z, Medzihradszky KF, Koncz C, Koncz Z, Szabados L. Arabidopsis PPR40 connects abiotic stress responses to mitochondrial electron transport. Plant Physiol. 2008;146(4):1721–1737. PubMed PMC
Yan S-P, Zhang Q-Y, Tang Z-C, Su W-A, Sun W-N. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics. 2006;5(3):484–496. PubMed
Hasegawa S, Sogabe Y, Asano T, Nakagawa T, Nakamura H, Kodama H, Ohta H, Yamaguchi K, Mueller MJ, Nishiuchi T. Gene expression analysis of wounding-induced root-to-shoot communication in Arabidopsis thaliana. Plant Cell Environ. 2011;34(5):705–716. PubMed
Ndimba BK, Chivasa S, Simon WJ, Slabas AR. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics. 2005;5(16):4185–4196. PubMed
Lawlor DW, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell Environ. 2002;25(2):275–294. PubMed
Vargas R, Trumbore SE, Allen MF. Evidence of old carbon used to grow new fine roots in a tropical forest. New Phytol. 2009;182(3):710–718. PubMed
Roitsch T, González M-C. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci. 2004;9(12):606–13. https://www.sciencedirect.com/science/article/pii/S136013850400250X. PubMed
Correa LR, Stein RJ, Fett-Neto AG. Adventitious rooting of detached Arabidopsis thaliana leaves. Biol Plant. 2012;56(1):25–30. PubMed
Robert CAM, Ferrieri RA, Schirmer S, Babst BA, Schueller MJ, Machado RAR, Arce CCM, Hibbard BE, Gershenzon J, Turlings TCJ, Erb M. Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms. Plant Cell Environ. 2014;37(11):2613–2622. PubMed
Zhou S, Lou Y-R, Tzin V, Jander G. Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol. 2015;169(3):1488–1498. PubMed PMC
Steinbrenner AD, Gómez S, Osorio S, Fernie AR, Orians CM. Herbivore-induced changes in tomato (Solanum lycopersicum) primary metabolism: a whole plant perspective. J Chem Ecol. 2011;37(12):1294–1303. PubMed
Yuan G, Wang X, Guo R, Wang Q. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem. 2010;121(4):1014–9. https://www.sciencedirect.com/science/article/pii/S0308814610001202.
Galmés J, Medrano H, Flexas J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol. 2007;175(1):81–93. PubMed
Vilanova L, Torres R, Viñas I, González-Candelas L, Usall J, Fiori S, Solsona C, Teixidó N. Wound response in orange as a resistance mechanism against Penicillium digitatum (pathogen) and P. expansum (non-host pathogen). Postharvest Biol Technol. 2013;78:113–22. https://www.sciencedirect.com/science/article/pii/S0925521412002797.
Birnbaum KD, Alvarado AS. Slicing across kingdoms: regeneration in plants and animals. Cell. 2008;132(4):697–710. https://www.sciencedirect.com/science/article/pii/S0092867408001414. PubMed PMC
Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K. Plant dehydrins and stress tolerance. Plant Signal Behav. 2011;6(10):1503–1509. PubMed PMC
Roach T, Ivanova M, Beckett RP, Minibayeva FV, Green I, Pritchard HW, Kranner I. An oxidative burst of superoxide in embryonic axes of recalcitrant sweet chestnut seeds as induced by excision and desiccation. Physiol Plant. 2008;133(2):131–139. PubMed
Yang H, Postel S, Kemmerling B, Ludewig U. Altered growth and improved resistance of Arabidopsis against Pseudomonas syringae by overexpression of the basic amino acid transporter AtCAT1. Plant Cell Environ. 2014;37(6):1404–1414. PubMed
Song JT, Lu H, Greenberg JT. Divergent roles in Arabidopsis thaliana development and defense of two homologous genes, aberrant growth and death2 and AGD2-like defense response protein1, encoding novel aminotransferases. Plant Cell. 2004;16(2):353–366. PubMed PMC
Dixon RA, Achnine L, Kota P, Liu C-J, Reddy MSS, Wang L. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol Plant Pathol. 2002;3(5):371–390. PubMed
Dacosta M, Huang B. Changes in Carbon Partitioning and Accumulation Patterns during Drought and Recovery for Colonial Bentgrass, Creeping Bentgrass, and Velvet Bentgrass. J AMER SOC HORT SCI. 2006;131(1314). https://www.researchgate.net/profile/Bingru_Huang/publication/279342082_Changes_in_Carbon_Partitioning_and_Accumulation_Patterns_during_Drought_and_Recovery_for_Colonial_Bentgrass_Creeping_Bentgrass_and_Velvet_Bentgrass/links/55ae55fd08aed9b7dcdd9790.pdf.
De XuL. novo root regeneration from leaf explants: wounding, auxin, and cell fate transition. Curr Opin Plant Biol. 2018;41:39–45. PubMed
Steffens B, Rasmussen A. The physiology of adventitious roots. Plant Physiol. 2016;170(2):603–617. PubMed PMC
Zobel RW, Wright SF, Zobel RW. Primary and Secondary Root Systems. In: Roots and Soil Management: Interactions between Roots and the Soil. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America; 2005. p. 3–14. https://dl.sciencesocieties.org/publications/books/abstracts/agronomymonogra/rootsandsoilman/3.
Stoll M, Loveys B, Dry P. Hormonal changes induced by partial rootzone drying of irrigated grapevine. J Exp Bot. 2000;51(350):1627–1634. PubMed
Sobeih WY, Dodd IC, Bacon MA, Grierson D, Davies WJ. Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying. J Exp Bot. 2004 PubMed
Černý M, Kuklová A, Hoehenwarter W, Fragner L, Novák O, Rotková G, Jedelský PL, Žáková K, Šmehilová M, Strnad M, Weckwerth W, Brzobohatý B. Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down-and up-regulation. J Exp Bot. 2013;64(14):4193–206. http://www.home.agilent.com. PubMed PMC
Craft J, Samalova M, Baroux C, Townley H, Martinez A, Jepson I, Tsiantis M, Moore I. New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J. 2005;41(6):899–918. PubMed
Pospíšilová H, Jiskrová E, Vojta P, Mrízová K, Kokáš F, Čudejková MM, Bergougnoux V, Plíhal O, Klimešová J, Novák O, Dzurová L, Galuszka P. Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. N Biotechnol. 2016;33(5):692–705. https://www.sciencedirect.com/science/article/pii/S1871678415002733. PubMed
Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell. 2010;22(12):3905–3920. PubMed PMC
Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran L-SP. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell. 2011;23(6):2169–2183. PubMed PMC
Skalák J, Vercruyssen L, Claeys H, Hradilová J, Černý M, Novák O, Plačková L, Saiz-Fernández I, Skaláková P, Coppens F, Dhondt S, Koukalová Š, Zouhar J, Inzé D, Brzobohatý B. Multifaceted activity of cytokinin in leaf development shapes its size and structure in Arabidopsis. Plant J. 2019;97(5):805–824. PubMed
Violante A, Cozzolino V, Perelomov L, Caporale A., Pigna M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J soil Sci plant Nutr. 2010;10(3):268–92. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162010000100005&lng=en&nrm=iso&tlng=en.
Marschner H, Marschner P. Marschner’s mineral nutrition of higher plants. London: Academic Press; 2012.
Salem MA, Yoshida T, Perez de Souza L, Alseekh S, Bajdzienko K, Fernie AR, Giavalisco P. An improved extraction method enables the comprehensive analysis of lipids, proteins, metabolites and phytohormones from a single sample of leaf tissue under water-deficit stress. Plant J. 2020 PubMed
Saiz-Fernández I, Milenković I, Berka M, Černý M, Tomšovský M, Brzobohatý B, Kerchev P. Integrated Proteomic and Metabolomic Profiling of Phytophthora cinnamomi Attack on Sweet Chestnut (Castanea sativa) Reveals Distinct Molecular Reprogramming Proximal to the Infection Site and Away from It. Int J Mol Sci. 2020;21(22):8525. https://www.mdpi.com/1422-0067/21/22/8525. PubMed PMC
Cerna H, Černý M, Habánová H, Šafářová D, Abushamsiya K, Navrátil M, Brzobohatý B. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV) J Proteomics. 2017;153:78–88. PubMed
Dufková H, Berka M, Luklová M, Rashotte AM, Brzobohatý B, Černý M. Eggplant Germination is Promoted by Hydrogen Peroxide and Temperature in an Independent but Overlapping Manner. Molecules. 2019;24(23):4270. https://www.mdpi.com/1420-3049/24/23/4270. PubMed PMC