Interaction With Fungi Promotes the Accumulation of Specific Defense Molecules in Orchid Tubers and May Increase the Value of Tubers for Biotechnological and Medicinal Applications: The Case Study of Interaction Between Dactylorhiza sp. and Tulasnella calospora
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35845638
PubMed Central
PMC9282861
DOI
10.3389/fpls.2022.757852
Knihovny.cz E-zdroje
- Klíčová slova
- biotic interaction, defense priming, lipidome, metabolome, orchid tuber, proteome,
- Publikační typ
- časopisecké články MeSH
Terrestrial orchids can form tubers, organs modified to store energy reserves. Tubers are an attractive source of nutrients, and salep, a flour made from dried orchid tubers, is the source of traditional beverages. Tubers also contain valuable secondary metabolites and are used in traditional medicine. The extensive harvest of wild orchids is endangering their populations in nature; however, orchids can be cultivated and tubers mass-produced. This work illustrates the importance of plant-fungus interaction in shaping the content of orchid tubers in vitro. Orchid plants of Dactylorhiza sp. grown in asymbiotic culture were inoculated with a fungal isolate from Tulasnella calospora group and, after 3 months of co-cultivation, tubers were analyzed. The fungus adopted the saprotrophic mode of life, but no visible differences in the morphology and biomass of the tubers were detected compared to the mock-treated plants. To elucidate the mechanisms protecting the tubers against fungal infestation, proteome, metabolome, and lipidome of tubers were analyzed. In total, 1,526, 174, and 108 proteins, metabolites, and lipids were quantified, respectively, providing a detailed snapshot of the molecular process underlying plant-microbe interaction. The observed changes at the molecular level showed that the tubers of inoculated plants accumulated significantly higher amounts of antifungal compounds, including phenolics, alkaloid Calystegine B2, and dihydrophenanthrenes. The promoted antimicrobial effects were validated by observing transient inhibition of Phytophthora cactorum growth. The integration of omics data highlighted the promotion of flavonoid biosynthesis, the increase in the formation of lipid droplets and associated production of oxylipins, and the accumulation of auxin in response to T. calospora. Taken together, these results provide the first insights into the molecular mechanisms of defense priming in orchid tubers and highlight the possible use of fungal interactors in biotechnology for the production of orchid secondary metabolites.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Molecular Biology and Genetics Izmir Institute of Technology Urla Turkey
Zobrazit více v PubMed
Adamo M., Chialva M., Calevo J., Rose S. De, Girlanda M., Perotto S., et al. . (2020). The dark side of orchid symbiosis: can tulasnella calospora decompose host tissues? Int. J. Mol. Sci. 21:3139. doi: 10.3390/ijms21093139, PMID: . PubMed DOI PMC
Ainsworth E. A., Gillespie K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2, 875–877. doi: 10.1038/nprot.2007.102 PubMed DOI
Anwar A., She M., Wang K., Riaz B., Ye X. (2018). Biological roles of ornithine aminotransferase (OAT) in plant stress tolerance: present progress and future perspectives. Int. J. Mol. Sci. 19:3681. doi: 10.3390/ijms19113681, PMID: PubMed DOI PMC
Arieti R. S., Staiger C. J. (2020). Auxin-induced actin cytoskeleton rearrangements require AUX1. New Phytol. 226, 441–459. doi: 10.1111/nph.16382, PMID: PubMed DOI PMC
Berka M., Luklová M., Dufková H., Malých V., Novák J., Saiz-Fernández I., et al. . (2020). Barley root proteome and metabolome in response to cytokinin and abiotic stimuli. Front. Plant Sci. 11:1647. doi: 10.3389/FPLS.2020.590337 PubMed DOI PMC
Brown D. E., Rashotte A. M., Murphy A. S., Normanly J., Tague B. W., Peer W. A., et al. . (2001). Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 126, 524–535. doi: 10.1104/pp.126.2.524, PMID: PubMed DOI PMC
Cai J., Liu X., Vanneste K., Proost S., Tsai W.-C., Liu K.-W., et al. . (2015). The genome sequence of the orchid Phalaenopsis equestris. Nat. Genet. 47, 65–72. doi: 10.1038/ng.3149, PMID: PubMed DOI
Černý M., Novák J., Habánová H., Cerna H., Brzobohatý B. (2016). Role of the proteome in phytohormonal signaling. Biochim. Biophys. Acta Proteins Proteomics 1864, 1003–1015. doi: 10.1016/j.bbapap.2015.12.008, PMID: PubMed DOI
Chen J., Liu S. S., Kohler A., Yan B., Luo H. M., Chen X. M., et al. . (2017). iTRAQ and RNA-Seq analyses provide new insights into regulation mechanism of symbiotic germination of Dendrobium officinale seeds (Orchidaceae). J. Proteome Res. 16, 2174–2187. doi: 10.1021/acs.jproteome.6b00999, PMID: PubMed DOI
Cheung M. Y., Li X., Miao R., Fong Y. H., Li K. P., Yung Y. L., et al. . (2016). ATP binding by the P-loop NTPase OsYchF1 (an unconventional G protein) contributes to biotic but not abiotic stress responses. Proc. Natl. Acad. Sci. U. S. A. 113, 2648–2653. doi: 10.1073/pnas.1522966113, PMID: PubMed DOI PMC
Cheung M. Y., Li M. W., Yung Y. L., Wen C. Q., Lam H. M. (2013). The unconventional P-loop NTPase OsYchF1 and its regulator OsGAP1 play opposite roles in salinity stress tolerance. Plant Cell Environ. 36, 2008–2020. doi: 10.1111/pce.12108, PMID: PubMed DOI
Cretton S., Oyarzún A., Righi D., Sahib L., Kaiser M., Christen P., et al. . (2018). A new antifungal and antiprotozoal bibenzyl derivative from Gavilea lutea. Nat. Prod. Res. 32, 695–701. doi: 10.1080/14786419.2017.1338287, PMID: PubMed DOI
Ding C., Wang Q.-B., Guo S., Wang Z. (2018). The improvement of bioactive secondary metabolites accumulation in Rumex gmelini Turcz through co-culture with endophytic fungi. Braz. J. Microbiol. 49, 362–369. doi: 10.1016/j.bjm.2017.04.013, PMID: PubMed DOI PMC
Dräger B. (2004). Chemistry and biology of calystegines. Nat. Prod. Rep. 21, 211–223. doi: 10.1039/b300289f, PMID: PubMed DOI
Dufková H., Berka M., Greplová M., Shejbalová Š., Hampejsová R., Luklová M., et al. . (2022). The Omics hunt for novel molecular markers of resistance to Phytophthora infestans. Plan. Theory 11:61. doi: 10.3390/plants11010061, PMID: PubMed DOI PMC
Favre-Godal Q., Gourguillon L., Lordel-Madeleine S., Gindro K., Choisy P. (2020). Orchids and their mycorrhizal fungi: an insufficiently explored relationship. Mycorrhiza 30, 5–22. doi: 10.1007/s00572-020-00934-2, PMID: PubMed DOI
Figueiredo L., Santos R. B., Figueiredo A. (2021). Defense and offense strategies: The role of aspartic proteases in plant–pathogen interactions. Biology 10, 1–14. doi: 10.3390/biology10020075, PMID: PubMed DOI PMC
Fochi V., Chitarra W., Kohler A., Voyron S., Singan V. R., Lindquist E. A., et al. . (2017a). Fungal and plant gene expression in the Tulasnella calospora–Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol. 213, 365–379. doi: 10.1111/nph.14279, PMID: PubMed DOI
Fochi V., Falla N., Girlanda M., Perotto S., Balestrini R. (2017b). Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae. Plant Sci. 263, 39–45. doi: 10.1016/j.plantsci.2017.06.015, PMID: PubMed DOI
Fontana D. C., de Paula S., Torres A. G., de Souza V. H. M., Pascholati S. F., Schmidt D., et al. . (2021). Endophytic Fungi: biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens 10:570. doi: 10.3390/pathogens10050570, PMID: PubMed DOI PMC
French E., Kaplan I., Iyer-Pascuzzi A., Nakatsu C. H., Enders L. (2021). Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267. doi: 10.1038/s41477-020-00830-9, PMID: PubMed DOI
Hadley G. (1970). Non-specificity of symbotic infection in orchid mycorrhiza. New Phytol. 69, 1015–1023. doi: 10.1111/j.1469-8137.1970.tb02481.x DOI
Hallmark T. H., Černý M., Brzobohatý B., Rashotte A. M. A. M., Hallmark H. T., Černý M., et al. . (2020). Trans-Zeatin-N-glucosides have biological activity in Arabidopsis thaliana. PLoS One 15:e0232762. doi: 10.1371/journal.pone.0232762, PMID: PubMed DOI PMC
Heldt H. W., Piechulla B. (2021). Plant Biochemistry. 5th Edn. London: Academic Press.
Hernández-Romero Y., Acevedo L., De Los Ángeles Sánchez M., Shier W. T., Abbas H. K., Mata R. (2005). Phytotoxic activity of bibenzyl derivatives from the orchid Epidendrum rigidum. J. Agric. Food Chem. 53, 6276–6280. doi: 10.1021/jf0508044, PMID: PubMed DOI
Himaya S. M. M. S., Sivasubramaniam N., Afreen S. M. M. S. (2021). A review on role of mycorrhizal fungi in plant disease management. Sri Lankan J. Technol. 1, 1–10.
Hung C. Y., Aspesi P., Hunter M. R., Lomax A. W., Perera I. Y. (2014). Phosphoinositide-signaling is one component of a robust plant defense response. Front. Plant Sci. 5:267. doi: 10.3389/fpls.2014.00267, PMID: PubMed DOI PMC
Hussain M. A., Fahad S., Sharif R., Jan M. F., Mujtaba M., Ali Q., et al. . (2020). Multifunctional role of brassinosteroid and its analogues in plants. Plant Growth Regul. 92, 141–156. doi: 10.1007/s10725-020-00647-8 DOI
Jahn L., Storm-Johannsen L., Seidler D., Noack J., Gao W., Schafhauser T., et al. . (2022). The Endophytic fungus Cyanodermella asteris influences growth of the nonnatural host plant Arabidopsis thaliana. Mol. Plant Microbe Interact. 35, 49–63. doi: 10.1094/MPMI-03-21-0072-R, PMID: PubMed DOI
Jurkuta R. J., Kaplinsky N. J., Spindel J. E., Barton M. K. (2009). Partitioning the apical domain of the Arabidopsis embryo requires the BOBBER1 NudC domain protein. Plant Cell 21, 1957–1971. doi: 10.1105/tpc.108.065284, PMID: PubMed DOI PMC
Kaur H., Chowrasia S., Gaur V. S., Mondal T. K. (2021). Allantoin: emerging role in plant abiotic stress tolerance. Plant Mol. Biol. Rep. 39, 648–661. doi: 10.1007/s11105-021-01280-z DOI
Kohler A., Kuo A., Nagy L. G., Morin E., Barry K. W., Buscot F., et al. . (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47, 410–415. doi: 10.1038/ng.3223, PMID: PubMed DOI
Kovács A., Vasas A., Hohmann J. (2008). Natural phenanthrenes and their biological activity. Phytochemistry 69, 1084–1110. doi: 10.1016/j.phytochem.2007.12.005 PubMed DOI
Krahmer N., Guo Y., Wilfling F., Hilger M., Lingrell S., Heger K., et al. . (2011). Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab. 14, 504–515. doi: 10.1016/j.cmet.2011.07.013, PMID: PubMed DOI PMC
Lannoo N., Van Damme E. J. M. (2014). Lectin domains at the frontiers of plant defense. Front. Plant Sci. 5:397. doi: 10.3389/fpls.2014.00397, PMID: PubMed DOI PMC
Li J. (2005). Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310, 121–125. doi: 10.1126/science.1115711, PMID: PubMed DOI
Li T., Yang W., Wu S., Selosse M.-A., Gao J. (2021). Progress and prospects of mycorrhizal fungal diversity in orchids. Front. Plant Sci. 12:646325. doi: 10.3389/fpls.2021.646325, PMID: PubMed DOI PMC
Lima T. L. C., Souza L. B. F. C., Tavares-Pessoa L. C. S., Dos Santos-Silva A. M., Cavalcante R. S., de Araújo-Júnior R. F., et al. . (2020). Phytol-loaded solid lipid nanoparticles as a novel anticandidal nanobiotechnological approach. Pharmaceutics 12, 1–19. doi: 10.3390/pharmaceutics12090871, PMID: PubMed DOI PMC
Marcos R., Izquierdo Y., Vellosillo T., Kulasekaran S., Cascón T., Hamberg M., et al. . (2015). 9-Lipoxygenase-derived oxylipins activate brassinosteroid signaling to promote cell wall-based defense and limit pathogen infection. Plant Physiol. 169, 2324–2334. doi: 10.1104/pp.15.00992, PMID: PubMed DOI PMC
Mehta S., Chakraborty A., Roy A., Singh I. K., Singh A. (2021). Fight hard or die trying: current status of lipid signaling during plant–pathogen interaction. Plan. Theory 10:1098. doi: 10.3390/plants10061098, PMID: PubMed DOI PMC
Meng Y. Y., Zhang W. L., Selosse M. A., Gao J. Y. (2019). Are fungi from adult orchid roots the best symbionts at germination? A case study. Mycorrhiza 29, 541–547. doi: 10.1007/s00572-019-00907-0, PMID: PubMed DOI
Molyneux R. J., Pan Y. T., Goldmann A., Tepfer D. A., Elbein A. D. (1993). Calystegins, a novel class of alkaloid glycosidase inhibitors. Arch. Biochem. Biophys. 304, 81–88. doi: 10.1006/abbi.1993.1324, PMID: PubMed DOI
Moreau M., Westlake T., Zampogna G., Popescu G., Tian M., Noutsos C., et al. . (2013). The Arabidopsis oligopeptidases TOP1 and TOP2 are salicylic acid targets that modulate SA-mediated signaling and the immune response. Plant J. 76, 603–614. doi: 10.1111/tpj.12320, PMID: PubMed DOI
Moreira X., Abdala-Roberts L., Castagneyrol B. (2018). Interactions between plant defence signalling pathways: evidence from bioassays with insect herbivores and plant pathogens. J. Ecol. 106, 2353–2364. doi: 10.1111/1365-2745.12987 DOI
Mou S., Shi L., Lin W., Liu Y., Shen L., Guan D., et al. . (2015). Over-expression of rice CBS domain containing protein, osCBSX3, confers rice resistance to Magnaporthe oryzae inoculation. Int. J. Mol. Sci. 16, 15903–15917. doi: 10.3390/ijms160715903, PMID: PubMed DOI PMC
Musharof Hossain M. (2011). Therapeutic orchids: traditional uses and recent advances—an overview. Fitoterapia 82, 102–140. doi: 10.1016/j.fitote.2010.09.007, PMID: PubMed DOI
Nguyen P.-J., Rippa S., Rossez Y., Perrin Y. (2016). Acylcarnitines participate in developmental processes associated to lipid metabolism in plants. Planta 243, 1011–1022. doi: 10.1007/s00425-016-2465-y, PMID: PubMed DOI
Pang Z., Chong J., Zhou G., De Lima Morais D. A., Chang L., Barrette M., et al. . (2021). MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396. doi: 10.1093/nar/gkab382, PMID: PubMed DOI PMC
Patel T. K., Williamson J. D. (2016). Mannitol in plants, fungi, and plant–fungal interactions. Trends Plant Sci. 21, 486–497. doi: 10.1016/j.tplants.2016.01.006 PubMed DOI
Perotto S., Rodda M., Benetti A., Sillo F., Ercole E., Rodda M., et al. . (2014). Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship. Planta 239, 1337–1349. doi: 10.1007/s00425-014-2062-x, PMID: PubMed DOI
Quoirin M., Lepoivre P. (1977). Improved media for in vitro culture of PRUNUS SP. Acta Hortic. 78, 437–442. doi: 10.17660/ActaHortic.1977.78.54 DOI
Rafiei V., Vélëz H., Tzelepis G. (2021). The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence. Int. J. Mol. Sci. 22:9359. doi: 10.3390/ijms22179359, PMID: PubMed DOI PMC
Rasmussen H. N. (1995). Terrestrial Orchids. Cambridge: Cambridge University Press.
Rasmussen H. N., Whigham D. F. (2002). Phenology of roots and mycorrhiza in orchid species differing in phototrophic strategy. New Phytol. 154, 797–807. doi: 10.1046/j.1469-8137.2002.00422.x, PMID: PubMed DOI
Saiz-Fernández I., Milenković I., Berka M., Černý M., Tomšovský M., Brzobohatý B., et al. . (2020). Integrated proteomic and metabolomic profiling of Phytophthora cinnamomi attack on sweet chestnut (Castanea sativa) reveals distinct molecular reprogramming proximal to the infection site and away from it. Int. J. Mol. Sci. 21, 8525. doi: 10.3390/ijms21228525, PMID: PubMed DOI PMC
Santra H. K., Banerjee D. (2020). “Natural products as fungicide and their role in crop protection,” in Natural Bioactive Products in Sustainable Agriculture (Singapore: Springer Singapore; ), 131–219.
Schiebold J. M. I., Bidartondo M. I., Lenhard F., Makiola A., Gebauer G. (2018). Exploiting mycorrhizas in broad daylight: partial mycoheterotrophy is a common nutritional strategy in meadow orchids. J. Ecol. 106, 168–178. doi: 10.1111/1365-2745.12831 DOI
Schneider C. A., Rasband W. S., Eliceiri K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. doi: 10.1038/nmeth.2089, PMID: PubMed DOI PMC
Schüßler A., Martin H., Cohen D., Fitz M., Wipf D. (2007). Arbuscular mycorrhiza: studies on the geosiphon symbiosis lead to the characterization of the first glomeromycotan sugar transporter. Plant Signal. Behav. 2, 431–434. doi: 10.4161/psb.2.5.4465, PMID: PubMed DOI PMC
Selin C., de Kievit T. R., Belmonte M. F., Fernando W. G. D. (2016). Elucidating the role of effectors in plant-fungal interactions: progress and challenges. Front. Microbiol. 7:600. doi: 10.3389/fmicb.2016.00600, PMID: PubMed DOI PMC
Şen M. A., Palabiyik I., Kurultay Ş. (2018). Composition, viscosity and solubility of saleps from twenty different orchid (Orchidaceae) species. J. Food Meas. Charact. 12, 1334–1339. doi: 10.1007/s11694-018-9747-y DOI
Shah A., Smith D. L. (2020). Flavonoids in agriculture: chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy 10:1209. doi: 10.3390/agronomy10081209 DOI
Shimada T. L., Takano Y., Shimada T., Fujiwara M., Fukao Y., Mori M., et al. . (2014). Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis. Plant Physiol. 164, 105–118. doi: 10.1104/pp.113.230185, PMID: PubMed DOI PMC
Siebers M., Brands M., Wewer V., Duan Y., Hölzl G., Dörmann P. (2016). Lipids in plant–microbe interactions. Biochim. Biophys. Acta 1861, 1379–1395. doi: 10.1016/j.bbalip.2016.02.021 PubMed DOI
Smith S. E., Read D. (2008). Mycorrhizal Symbiosis. Amsterdam: Elsevier.
Szklarczyk D., Gable A. L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., et al. . (2019). STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613. doi: 10.1093/nar/gky1131, PMID: PubMed DOI PMC
Takagi H., Ishiga Y., Watanabe S., Konishi T., Egusa M., Akiyoshi N., et al. . (2016). Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. J. Exp. Bot. 67, 2519–2532. doi: 10.1093/jxb/erw071, PMID: PubMed DOI PMC
Tekinşen K. K., Güner A. (2010). Chemical composition and physicochemical properties of tubera salep produced from some orchidaceae species. Food Chem. 121, 468–471. doi: 10.1016/j.foodchem.2009.12.066 DOI
Testone G., Sobolev A. P., Mele G., Nicolodi C., Gonnella M., Arnesi G., et al. . (2021). Leaf nutrient content and transcriptomic analyses of endive (Cichorium endivia) stressed by downpour-induced waterlog reveal a gene network regulating kestose and inulin contents. Hortic. Res. 8:92. doi: 10.1038/s41438-021-00513-2, PMID: PubMed DOI PMC
Valles M., Boxus P. (1987). Micropropagation of Several Rosa hybrida L. cultivars. Acta Hortic. 212, 611–618. doi: 10.17660/ActaHortic.1987.212.102 DOI
Ward E. W. B. (1975). Loroglossol: an orchid phytoalexin. Phytopathology 65:632. doi: 10.1094/Phyto-65-632 DOI
White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR Protocols. eds. Innis M. A., Gelfand D. H., Sninsky J. J., White T. J., 315–322. doi: 10.1016/B978-0-12-372180-8.50042-1 DOI
Ye H.-T., Luo S.-Q., Yang Z.-N., Wang Y.-S., Ding Q., Wang K.-F., et al. . (2021). Endophytic fungi stimulate the concentration of medicinal secondary metabolites in houttuynia cordata thunb. Plant Signal. Behav. 16, 1929731. doi: 10.1080/15592324.2021.1929731, PMID: PubMed DOI PMC
Yoo H., Greene G. H., Yuan M., Xu G., Burton D., Liu L., et al. . (2019). Translational regulation of metabolic dynamics during effector-triggered immunity. Mol. Plant 13, 88–98. doi: 10.1016/j.molp.2019.09.009, PMID: PubMed DOI PMC
Zhang B., Tremousaygue D., Denancé N., Van Esse H. P., Hörger A. C., Dabos P., et al. . (2014). PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis. Plant J. 79, 1009–1019. doi: 10.1111/tpj.12602, PMID: PubMed DOI PMC
Zhang G. Q., Xu Q., Bian C., Tsai W. C., Yeh C. M., Liu K. W., et al. . (2016). The Dendrobium catenatum Lindl. Genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Sci. Rep. 6:19029. doi: 10.1038/srep19029, PMID: PubMed DOI PMC