HSP70 as a Mediator of Host-Pathogen Interaction in Arabidopsis thaliana During Plasmodiophora brassicae Infection
Jazyk angličtina Země Dánsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
8J23DE004
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
40464190
PubMed Central
PMC12135032
DOI
10.1111/ppl.70309
Knihovny.cz E-zdroje
- Klíčová slova
- clubroot disease, interactomics, plant immunity, plant‐pathogen interaction, proteomics,
- MeSH
- Arabidopsis * parazitologie genetika metabolismus MeSH
- interakce hostitele a patogenu * fyziologie MeSH
- kořeny rostlin parazitologie metabolismus genetika MeSH
- mutace MeSH
- nemoci rostlin * parazitologie imunologie MeSH
- Plasmodiophorida * fyziologie MeSH
- proteiny huseníčku * metabolismus genetika MeSH
- proteiny tepelného šoku HSP70 * metabolismus genetika MeSH
- proteomika MeSH
- regulace genové exprese u rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny huseníčku * MeSH
- proteiny tepelného šoku HSP70 * MeSH
Plasmodiophora brassicae is one of the most devastating threats to Brassicaceae crops. However, the molecular mechanisms underlying clubroot disease remain unclear. Initial proteomics results led us to hypothesize that HSP70 proteins regulate host-P. brassicae interactions by modulating both plant defenses and pathogen activity. Using the Arabidopsis thaliana-P. brassicae model system, we studied the role of HSP70 proteins in detail. Through a combination of proteomics and mutant phenotype analyses, we indicate that Plasmodiophora infection induces HSP70 accumulation in Arabidopsis roots, and mutations in specific HSP70 isoforms either promote (HSP70-1, HSP70-13, HSP70-14) or suppress (HSP70-5, HSP70-12) the onset of clubroot disease. Proteomic profiling of root galls showed strong correlations between infection severity and pathogen-derived HSP70 protein CEO96729. Interactomics analyses revealed that CEO96729 interacts with host proteins involved in plant response to Plasmodiophora infection, including an extracellular GDSL esterase/lipase with a putative role in long-distance signaling, and that CEO96729 forms heterodimers with host HSP70 isoforms. These findings suggest that Plasmodiophora hijacks the host chaperone machinery to facilitate infection, offering a potential explanation for the observed modulation of disease progression in HSP70 mutants. Notably, the results also point to possible intracellular interactions with key enzymes in host physiology, including catalase 2, essential for ROS metabolism, and nitrilase, critical for auxin biosynthesis and root gall formation. Collectively, our study highlights the multifaceted roles of HSP70 proteins in Plasmodiophora pathogenicity and host-pathogen interactions, providing insights into chaperone-mediated processes in plant immunity and infection dynamics.
Faculty of Biology Department of Plant Physiology Technische Universität Dresden Dresden Germany
Instituto de Biología Molecular y Celular de Plantas Valencia Spain
Zobrazit více v PubMed
Adhikary, D. , Mehta D., Uhrig R. G., Rahman H., and Kav N. N. V.. 2022. “A proteome‐level investigation into Plasmodiophora brassicae resistance in Brassica napus canola.” Frontiers in Plant Science 13: 1693. PubMed PMC
Bailey, T. L. , Johnson J., Grant C. E., and Noble W. S.. 2015. “The MEME Suite.” Nucleic Acids Research 43, no. W1: W39–W49. PubMed PMC
Berka, M. , Greplová M., Saiz‐Fernández I., et al. 2020. “Peptide‐Based Identification of Phytophthora Isolates and Phytophthora Detection in Planta.” International Journal of Molecular Sciences 21, no. 24: 9463. PubMed PMC
Berka, M. , Kopecká R., Berková V., Brzobohatý B., and Černý M.. 2022. “Regulation of Heat Shock Proteins 70 and Their Role in Plant Immunity.” Journal of Experimental Botany 73, no. 7: 1894–1909. PubMed PMC
Berková, V. , M. Berka, M . Kameniarová, et al. 2023. “Salicylic Acid Treatment and Its Effect on Seed Yield and Seed Molecular Composition of Pisum Sativum under Abiotic Stress.” International Journal of Molecular Sciences 24, no. 6: 5454. PubMed PMC
Bíbová, J. , Kábrtová V., Večeřová V., et al. 2023. “The Role of a Cytokinin Antagonist in the Progression of Clubroot Disease.” Biomolecules 13, no. 2: 299. PubMed PMC
Botero‐Ramírez, A. , Hwang S.‐F., and Strelkov S. E.. 2022. “Effect of Clubroot ( Plasmodiophora brassicae ) on Yield of Canola ( Brassica napus ).” Canadian Journal of Plant Pathology 44, no. 3: 372–385.
Breitenbach, H. H. , Wenig M., Wittek F., et al. 2014. “Contrasting Roles of the Apoplastic Aspartyl Protease APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1‐DEPENDENT1 and LEGUME LECTIN‐LIKE PROTEIN1 in Arabidopsis Systemic Acquired Resistance.” Plant Physiology 165, no. 2: 791–809. PubMed PMC
Cao, T. , Rennie D. C., Manolii V. P., Hwang S. F., Falak I., and Strelkov S. E.. 2014. “Quantifying Resistance to Plasmodiophora brassicae in Brassica Hosts.” Plant Pathology 63, no. 3: 715–726.
Cao, T. , Srivastava S., Rahman M. H., et al. 2008. “Proteome‐Level Changes in the Roots of Brassica napus as a Result of Plasmodiophora brassicae Infection.” Plant Science 174, no. 1: 97–115.
Chen, L. , Geng X., Ma Y., et al. 2019. “The ER Lumenal Hsp70 Protein FpLhs1 Is Important for Conidiation and Plant Infection in Fusarium Pseudograminearum .” Frontiers in Microbiology 10: 1401. PubMed PMC
Decaestecker, W. , Buono R. A., Pfeiffer M. L., et al. 2019. “CRISPR‐TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis .” Plant Cell 31, no. 12: 2868–2887. PubMed PMC
Dixon, G. R. 2009. “The Occurrence and Economic Impact of Plasmodiophora brassicae and Clubroot Disease.” Journal of Plant Growth Regulation 28, no. 3: 194–202.
Dorfer, V. , Strobl M., Winkler S., and Mechtler K.. 2021. “MS Amanda 2.0: Advancements in the Standalone Implementation.” Rapid Communications in Mass Spectrometry 35, no. 11: e9088. PubMed PMC
Dufková, H. , Berka M., Luklová M., Rashotte A. M., Brzobohatý B., and Černý M.. 2019. “Eggplant Germination Is Promoted by Hydrogen Peroxide and Temperature in an Independent but Overlapping Manner.” Molecules 24, no. 23: 4270. PubMed PMC
Dufková, H. , Berka M., Psota V., Brzobohatý B., and Černý M.. 2023. “Environmental Impacts on Barley Grain Composition and Longevity.” Journal of Experimental Botany 74, no. 5: 1609–1628. PubMed
Fähling, M. , Graf H., and Siemens J.. 2003. “Pathotype Separation of Plasmodiophora brassicae by the Host Plant.” Journal of Phytopathology 151, no. 7–8: 425–430.
Galindo‐González, L. , Manolii V., Hwang S.‐F., and Strelkov S. E.. 2020. “Response of Brassica napus to Plasmodiophora brassicae Involves Salicylic Acid‐Mediated Immunity: An RNA‐Seq‐Based Study.” Frontiers in Plant Science 11: 1025. PubMed PMC
Gorovits, R. , Liu Y., and Czosnek H.. 2016. “The Involvement of HSP70 and HSP90 in Tomato Yellow Leaf Curl Virus Infection in Tomato Plants and Insect Vectors.” In Heat Shock Proteins and Plants, 189–207. Springer.
Guex, N. , Peitsch M. C., and Schwede T.. 2009. “Automated Comparative Protein Structure Modeling With SWISS‐MODEL and Swiss‐PdbViewer: A Historical Perspective.” Electrophoresis 30: S162–S173. PubMed
Hino, C. , Chan G., Jordaan G., et al. 2023. “Cellular Protection From H2O2 Toxicity by Fv‐Hsp70: Protection via Catalase and Gamma‐Glutamyl‐Cysteine Synthase.” Cell Stress & Chaperones 28, no. 4: 429–439. PubMed PMC
Hloušková, P. , Černý M., Kořínková N., et al. 2019. “Affinity Chromatography Revealed 14–3‐3 Interactome of Tomato ( Solanum lycopersicum L.) During Blue Light‐Induced de‐Etiolation.” Journal of Proteomics 193: 44–61. PubMed
Hooper, C. M. , Castleden I. R., Tanz S. K., Aryamanesh N., and Millar A. H.. 2017. “SUBA4: The Interactive Data Analysis Centre for Arabidopsis Subcellular Protein Locations.” Nucleic Acids Research 45, no. D1: D1064–D1074. PubMed PMC
Huerta‐Cepas, J. , Serra F., and Bork P.. 2016. “ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data.” Molecular Biology and Evolution 33, no. 6: 1635–1638. PubMed PMC
Hwang, S. , Strelkov S. E., Feng J. I. E., Gossen B. D., and Howard R. O. N. J.. 2012. “ Plasmodiophora brassicae: A Review of an Emerging Pathogen of the Canadian Canola (Brassica napus) Crop.” Molecular Plant Pathology 13, no. 2: 105–113. PubMed PMC
Irani, S. , Trost B., Waldner M., et al. 2018. “Transcriptome Analysis of Response to Plasmodiophora brassicae Infection in the Arabidopsis Shoot and Root.” BMC Genomics 19, no. 1: 23. PubMed PMC
Javed, M. A. , Schwelm A., Zamani‐Noor N., et al. 2023. “The Clubroot Pathogen Plasmodiophora brassicae: A Profile Update.” Molecular Plant Pathology 24, no. 2: 89–106. PubMed PMC
Jayasinghege, C. P. A. , Ozga J. A., Manolii V. P., Hwang S.‐F., and Strelkov S. E.. 2023. “Impact of Susceptibility on Plant Hormonal Composition During Clubroot Disease Development in Canola ( Brassica napus ).” Plants 12, no. 16: 2899. PubMed PMC
Ji, R. , Gao S., Bi Q., et al. 2021. “The Salicylic Acid Signaling Pathway Plays an Important Role in the Resistant Process of Brassica rapa L. Ssp. Pekinensis to Plasmodiophora brassicae Woronin.” Journal of Plant Growth Regulation 40, no. 1: 405–422.
Ji, R. , Wang Y., Wang X., Liu Y., Shen X., and Feng H.. 2018. “Proteomic Analysis of the Interaction Between Plasmodiophora brassicae and Chinese Cabbage ( Brassica rapa L. Ssp. Pekinensis) at the Initial Infection Stage.” Scientia Horticulturae 233: 386–393.
Kageyama, K. , and Asano T.. 2009. “Life Cycle of Plasmodiophora brassicae .” Journal of Plant Growth Regulation 28, no. 3: 203–211.
Kanzaki, H. , Saitoh H., Ito A., et al. 2003. “Cytosolic HSP90 and HSP70 Are Essential Components of INF1‐Mediated Hypersensitive Response and Non‐Host Resistance to Pseudomonas cichorii in Nicotiana Benthamiana .” Molecular Plant Pathology 4, no. 5: 383–391. PubMed
Kim, H. G. , Kwon S. J., Jang Y. J., et al. 2013. “GDSL LIPASE1 Modulates Plant Immunity Through Feedback Regulation of Ethylene Signaling.” Plant Physiology 163, no. 4: 1776–1791. PubMed PMC
Kong, A. T. , Leprevost F. V., Avtonomov D. M., Mellacheruvu D., and Nesvizhskii A. I.. 2017. “MSFragger: Ultrafast and Comprehensive Peptide Identification in Mass Spectrometry–Based Proteomics.” Nature Methods 14, no. 5: 513–520. PubMed PMC
Kopecká, R. , and Černý M.. 2024. “Xylem Sap Proteome Analysis Provides Insight Into Root–Shoot Communication in Response to flg22.” Plants 13, no. 14: 1983. PubMed PMC
Kourelis, J. , Kaschani F., Grosse‐Holz F. M., Homma F., Kaiser M., and van der Hoorn R. A. L.. 2018. “Homology‐Guided Re‐Annotation Improves the Gene Models of the Alloploid Nicotiana Benthamiana .” BMC Genomics 20, no. 1: 722. PubMed PMC
Lan, M. , Li G., Hu J., et al. 2019. “iTRAQ‐Based Quantitative Analysis Reveals Proteomic Changes in Chinese Cabbage (Brassica rapa L.) in Response to Plasmodiophora brassicae Infection.” Scientific Reports 9, no. 1: 12–58. PubMed PMC
LeBlanc, M.‐A. , Fink M. R., Perkins T. T., and Sousa M. C.. 2021. “Type III Secretion System Effector Proteins Are Mechanically Labile.” Proceedings of the National Academy of Sciences 118, no. 12: e2019566118. PubMed PMC
LeBoldus, J. M. , Manolii V. P., Turkington T. K., and Strelkov S. E.. 2012. “Adaptation to Brassica Host Genotypes by a Single‐Spore Isolate and Population of Plasmodiophora brassicae (Clubroot).” Plant Disease 96, no. 6: 833–838. PubMed
Lee, J. H. , Lee S. E., Oh S., Seo E., and Choi D.. 2018. “HSP70s Enhance a Phytophthora infestans Effector‐Induced Cell Death via an MAPK Cascade in Nicotiana Benthamiana .” Molecular Plant‐Microbe Interactions 31, no. 3: 356–362. PubMed
Letunic, I. , and Bork P.. 2024. “Interactive Tree of Life (iTOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool.” Nucleic Acids Research 52, no. W1: W78–W82. PubMed PMC
Linder, M. , and von Strandmann E. P.. 2021. “The Role of Extracellular HSP70 in the Function of Tumor‐Associated Immune Cells.” Cancers 13, no. 18: 4721. PubMed PMC
Ludwig‐Müller, J. , Jülke S., Geiß K., et al. 2015. “A Novel Methyltransferase From the Intracellular Pathogen Plasmodiophora brassicae Methylates Salicylic Acid.” Molecular Plant Pathology 16, no. 4: 349–364. PubMed PMC
Ma, L. , Zhang T., Zhu Q.‐H., Zhang X., Sun J., and Liu F.. 2024. “HSP70 and APX1 Play Important Roles in Cotton Male Fertility by Mediating ROS Homeostasis.” International Journal of Biological Macromolecules 278: 134–856. PubMed
Mambula, S. S. , Stevenson M. A., Ogawa K., and Calderwood S. K.. 2007. “Mechanisms for Hsp70 Secretion: Crossing Membranes Without a Leader.” Methods 43, no. 3: 168–175. PubMed PMC
Moon, J. Y. , Kim S. T., Choi G. J., et al. 2020. “Comparative Proteomic Analysis of Host Responses to Plasmodiophora brassicae Infection in Susceptible and Resistant Brassica oleracea .” Plant Biotechnology Reports 14, no. 3: 263–274.
Movahed, N. , Cabanillas D. G., Wan J., Vali H., Laliberté J.‐F., and Zheng H.. 2019. “ Turnip Mosaic Virus Components Are Released Into the Extracellular Space by Vesicles in Infected Leaves.” Plant Physiology 180, no. 3: 1375–1388. PubMed PMC
Neuhaus, K. , Grsic‐Rausch S., Sauerteig S., and Ludwig‐Müller J.. 2000. “ Arabidopsis Plants Transformed With Nitrilase 1 or 2 in Antisense Direction Are Delayed in Clubroot Development.” Journal of Plant Physiology 156, no. 5–6: 756–761.
O'Connor, T. R. , Dyreson C., and Wyrick J. J.. 2005. “Athena: A Resource for Rapid Visualization and Systematic Analysis of Arabidopsis Promoter Sequences.” Bioinformatics 21, no. 24: 4411–4413. PubMed
Oh, I. S. , Park A. R., Bae M. S., et al. 2005. “Secretome Analysis Reveals an Arabidopsis Lipase Involved in Defense Against Alternaria Brassicicola .” Plant Cell 17, no. 10: 2832–2847. PubMed PMC
Park, C.‐J. , Bart R., Chern M., Canlas P. E., Bai W., and Ronald P. C.. 2010. “Overexpression of the Endoplasmic Reticulum Chaperone BiP3 Regulates XA21‐Mediated Innate Immunity in Rice.” PLoS One 5, no. 2: e9262. PubMed PMC
Pérez‐López, E. , Waldner M., Hossain M., et al. 2018. “Identification of Plasmodiophora brassicae Effectors—A Challenging Goal.” Virulence 9, no. 1: 1344–1353. PubMed PMC
Perez‐Riverol, Y. , Bai J., Bandla C., et al. 2022. “The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry‐Based Proteomics Evidences.” Nucleic Acids Research 50, no. D1: D543–D552. PubMed PMC
Prerostova, S. , Dobrev P. I., Konradyova V., et al. 2018. “Hormonal Responses to Plasmodiophora brassicae Infection in Brassica napus Cultivars Differing in Their Pathogen Resistance.” International Journal of Molecular Sciences 19, no. 12: 4024. PubMed PMC
Řičařová, V. , Kaczmarek J., Strelkov S. E., et al. 2016. “Pathotypes of Plasmodiophora brassicae Causing Damage to Oilseed Rape in The Czech Republic and Poland.” European Journal of Plant Pathology 145: 559–572.
Schumacher, J. , Waite C. J., Bennett M. H., Perez M. F., Shethi K., and Buck M.. 2014. “Differential Secretome Analysis of Pseudomonas syringae Pv Tomato Using Gel‐Free MS Proteomics.” Frontiers in Plant Science 5: 242. PubMed PMC
Sehnal, D. , Bittrich S., Deshpande M., et al. 2021. “Mol* Viewer: Modern Web App for 3D Visualization and Analysis of Large Biomolecular Structures.” Nucleic Acids Research 49, no. W1: W431–W437. PubMed PMC
Sheikh, A. H. , Zacharia I., Tabassum N., Hirt H., and Ntoukakis V.. 2024. “14–3‐3 Proteins as a Major Hub for Plant Immunity.” Trends in Plant Science 29, no. 11: 1245–1253. PubMed
Siemens, J. , Nagel M., Ludwig‐Müller J., and Sacristán M. D.. 2002. “The Interaction of Plasmodiophora brassicae and Arabidopsis thaliana: Parameters for Disease Quantification and Screening of Mutant Lines.” Journal of Phytopathology 150, no. 11–12: 592–605.
Song, T. , Chu M., Lahlali R., Yu F., and Peng G.. 2016. “Shotgun Label‐Free Proteomic Analysis of Clubroot (Plasmodiophora brassicae) Resistance Conferred by the Gene Rcr1 in Brassica rapa .” Frontiers in Plant Science 7: 1013. PubMed PMC
Stefanowicz, K. , Szymanska‐Chargot M., Truman W., et al. 2021. “ Plasmodiophora brassicae‐Triggered Cell Enlargement and Loss of Cellular Integrity in Root Systems Are Mediated by Pectin Demethylation.” Frontiers in Plant Science 12: 711–838. PubMed PMC
Struck, C. , Rüsch S., and Strehlow B.. 2022. “Control Strategies of Clubroot Disease Caused by Plasmodiophora brassicae .” Microorganisms 10, no. 3: 620. PubMed PMC
Tsai, Y.‐L. , Chiang Y.‐R., Wu C.‐F., Narberhaus F., and Lai E.‐M.. 2012. “One out of Four: HspL but no Other Small Heat Shock Protein of Agrobacterium tumefaciens Acts as Efficient Virulence‐Promoting VirB8 Chaperone.” PLoS One 7, no. 11: e49685. PubMed PMC
Wang, K. , Shi Y., Sun Q., et al. 2022. “Ethylene Plays a Dual Role During Infection by Plasmodiophora brassicae of Arabidopsis thaliana .” Genes 13, no. 8: 1299. PubMed PMC
Waterhouse, A. , Bertoni M., Bienert S., et al. 2018. “SWISS‐MODEL: Homology Modelling of Protein Structures and Complexes.” Nucleic Acids Research 46, no. W1: W296–W303. PubMed PMC
Xi, D. , Li X., Gao L., Zhang Z., Zhu Y., and Zhu H.. 2021. “Application of Exogenous Salicylic Acid Reduces Disease Severity of Plasmodiophora brassicae in Pakchoi ( Brassica campestris Ssp. Chinensis Makino).” PLoS One 16, no. 6: e0248648. PubMed PMC
Yuan, H.‐M. , Liu W.‐C., and Lu Y.‐T.. 2017. “CATALASE2 Coordinates SA‐Mediated Repression of Both Auxin Accumulation and JA Biosynthesis in Plant Defenses.” Cell Host & Microbe 21, no. 2: 143–155. PubMed
Zamani‐Noor, N. , Wallenhammar A. C., Kaczmarek J., et al. 2022. “Pathotype Characterization of Plasmodiophora brassicae , the Cause of Clubroot in Central Europe and Sweden (2016–2020).” Pathogens 11, no. 12: 1440. PubMed PMC
Zhao, H. , A. Jan, N. Ohama, S. Kidokoro, et al. 2021. “Cytosolic HSC70s Repress Heat Stress Tolerance and Enhance Seed Germination Under Salt Stress Conditions.” Plant, Cell and Environment 44, no. 6: 1788–1801. PubMed
Zhao, Y. , Bi K., Gao Z., et al. 2017. “Transcriptome Analysis of Arabidopsis thaliana in Response to Plasmodiophora brassicae During Early Infection.” Frontiers in Microbiology 8: 673. PubMed PMC