• This record comes from PubMed

Hormonal Responses to Plasmodiophora brassicae Infection in Brassica napus Cultivars Differing in Their Pathogen Resistance

. 2018 Dec 13 ; 19 (12) : . [epub] 20181213

Language English Country Switzerland Media electronic

Document type Comparative Study, Journal Article

Grant support
European Regional Development Fund-Project "Centre for Experimental Plant Biology": grant number CZ.02.1.01/0.0/0.0/16_019/0000738 Ministerstvo Školství, Mládeže a Tělovýchovy
LD15093 Ministerstvo Školství, Mládeže a Tělovýchovy

Hormonal dynamics after Plasmodiophora brassicae infection were compared in two Brassica napus cultivars-more resistant SY Alister and more sensitive Hornet, in order to elucidate responses associated with efficient defense. Both cultivars responded to infection by the early transient elevation of active cytokinins (predominantly cis-zeatin) and auxin indole-3-acetic acid (IAA) in leaves and roots, which was longer in Hornet. Moderate IAA levels in Hornet roots coincided with a high expression of biosynthetic gene nitrilase NIT1 (contrary to TAA1, YUC8, YUC9). Alister had a higher basal level of salicylic acid (SA), and it stimulated its production (via the expression of isochorismate synthase (ICS1)) in roots earlier than Hornet. Gall formation stimulated cytokinin, auxin, and SA levels-with a maximum 22 days after inoculation (dai). SA marker gene PR1 expression was the most profound at the time point where gall formation began, in leaves, roots, and especially in galls. Jasmonic acid (JA) was higher in Hornet than in Alister during the whole experiment. To investigate SA and JA function, SA was applied before infection, and twice (before infection and 15 dai), and JA at 15 dai. Double SA application diminished gall formation in Alister, and JA promoted gall formation in both cultivars. Activation of SA/JA pathways reflects the main differences in clubroot resistance.

See more in PubMed

Dixon G.R. The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. J. Plant Growth Regul. 2009;28:194–202. doi: 10.1007/s00344-009-9090-y. DOI

Ingram D.S., Tommerup I.C. The life history of Plasmodiophora brassicae Woron. Proc. R. Soc. Lond. B. 1972;180:103–112. doi: 10.1098/rspb.1972.0008. DOI

Wallenhammar A.C. Prevalence of Plasmodiophora brassicae in a spring oilseed rape growing area in central Sweden and factors influencing soil infestation levels. Plant Pathol. 1996;45:710–719. doi: 10.1046/j.1365-3059.1996.d01-173.x. DOI

Ludwig-Müller J. Belowground Defence Strategies in Plants. In: Vos C., Kamal K., editors. Belowground Defence Strategies in Plants. Springer; Cham, Switzerland: 2016. pp. 195–219. (Signaling and Communication in Plants Series).

Ludwig-Müller J., Prinsen E., Rolfe S.A., Scholes J.D. Metabolism and plant hormone action during clubroot disease. J. Plant Growth Regul. 2009;28:229–244. doi: 10.1007/s00344-009-9089-4. DOI

Siemens J., González M.C., Wolf S., Hofmann C., Greiner S., Du Y., Rausch T., Roitsch T., Ludwig-Müller J. Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana. Mol. Plant Pathol. 2011;12:247–262. doi: 10.1111/j.1364-3703.2010.00667.x. PubMed DOI PMC

Dekhuijzen H.M., Overeem J.C. The role of cytokinins in clubroot formation. Physiol. Plant Pathol. 1971;1:151–161. doi: 10.1016/0048-4059(71)90024-5. DOI

Dekhuijzen H.M. The occurrence of free and bound cytokinins in plasmodia of Plasmodiophora brassicae isolated from tissue cultures of clubroots. Plant Cell Rep. 1981;1:18–20. doi: 10.1007/BF00267649. PubMed DOI

Müller P., Hilgenberg W. Isomers of zeatin and zeatin riboside in clubroot tissue—Evidence for trans-zeatin biosynthesis by Plasmodiophora brassicae. Physiol. Plant. 1986;66:245–250. doi: 10.1111/j.1399-3054.1986.tb02415.x. DOI

Siemens J., Keller I., Sarx J., Kunz S., Schuller A., Nagel W., Schmülling T., Parniske M., Ludwig-Müller J. Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol. Plant Microbe Interact. 2006;19:480–494. doi: 10.1094/MPMI-19-0480. PubMed DOI

Devos S., Laukens K., Deckers P., Van Der Straeten D., Beeckman T., Inzé D., Van Onckelen H., Witters E., Prinsen E. A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol. Plant Microbe Interact. 2006;19:1431–1443. doi: 10.1094/MPMI-19-1431. PubMed DOI

Malinowski R., Novák O., Borhan M.H., Spíchal L., Strnad M., Rolfe S.A. The role of cytokinins in clubroot disease. Eur. J. Plant Pathol. 2016;145:543–557. doi: 10.1007/s10658-015-0845-y. DOI

Grsic S., Kirchheim B., Pieper K., Fritsch M., Hilgenberg W., Ludwig-Müller J. Induction of auxin biosynthetic enzymes by jasmonic acid and in clubroot diseased Chinese cabbage plants. Physiol. Plant. 1999;105:521–531. doi: 10.1034/j.1399-3054.1999.105318.x. DOI

Schuller A., Kehr J., Ludwig-Müller J. Laser microdissection coupled to transcriptional profiling of Arabidopsis roots inoculated by Plasmodiophora brassicae indicates a role for brassinosteroids in clubroot formation. Plant Cell Physiol. 2014;55:392–411. doi: 10.1093/pcp/pct174. PubMed DOI

Lemarie S., Robert-Seilaniantz A., Lariagon C., Lemoine J., Marnet N., Jubault M., Manzanares-Dauleux M.J., Gravot A. Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis. Plant Cell Physiol. 2015;56:2158–2168. doi: 10.1093/pcp/pcv127. PubMed DOI

Jubault M., Lariagon C., Taconnat L., Renou J.P., Gravot A., Delourme R., Manzanares-Dauleux M.J. Partial resistance to clubroot in Arabidopsis is based on changes in the host primary metabolism and targeted cell division and expansion capacity. Funct. Integr. Genom. 2013;13:191–205. doi: 10.1007/s10142-013-0312-9. PubMed DOI PMC

Lovelock D.A., Sola I., Marschollek S., Donald C.E., Rusak G., van Pée K.-H., Ludwig-Müller J., Cahill D.M. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease. Mol. Plant Pathol. 2016;17:1237–1251. doi: 10.1111/mpp.12361. PubMed DOI PMC

Zheng X.Y., Spivey N.W., Zeng W.Q., Liu P.P., Fu Z.Q., Klessig D.F., He S.Y., Dong X.N. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe. 2012;11:587–596. doi: 10.1016/j.chom.2012.04.014. PubMed DOI PMC

Kobelt P., Siemens J., Sacristán M.D. Histological characterisation of the incompatible interaction between Arabidopsis thaliana and the obligate biotrophic pathogen Plasmodiophora brassicae. Mycol. Res. 2000;104:220–225. doi: 10.1017/S0953756299001781. DOI

Řičařová V., Kazda J., Baranyk P., Ryšánek P. Greenhouse and field experiments with winter oilseed rape cultivars resistant to Plasmodiophora brassicae Wor. Crop Prot. 2017;92:60–69. doi: 10.1016/j.cropro.2016.10.009. DOI

Schwelm A., Fogelqvist J., Knaust A., Jülke S., Lilja T., Bonilla-Rosso G., Karlsson M., Shevchenko A., Choi S.R., Dhandapani V., et al. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Sci. Rep. 2015;5:11153. doi: 10.1038/srep11153. PubMed DOI PMC

Devos S., Vissenberg K., Verbelen J.P., Prinsen E. Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: Impacts on cell wall metabolism and hormone balance. New Phytol. 2005;166:241–250. doi: 10.1111/j.1469-8137.2004.01304.x. PubMed DOI

Ando S., Asano T., Tsushima S., Kamachi S., Hagio T., Tabei Y. Changes in gene expression of putative isopentenyltransferase during clubroot development in Chinese cabbage (Brassica rapa L.) Physiol. Mol. Plant Pathol. 2005;67:59–67. doi: 10.1016/j.pmpp.2005.09.005. DOI

Ludwig-Müller J., Bendel U., Thermann P., Ruppel M., Epstein E., Hilgenberg W. Concentrations of indole-3-acetic acid in plants of tolerant and susceptible varieties of Chinese cabbage infected with Plasmodiophora brassicae Woron. New Phytol. 1993;125:763–769. doi: 10.1111/j.1469-8137.1993.tb03926.x. PubMed DOI

Xu L., Ren L., Chen K., Liu F., Fang X. Putative role of IAA during the early response of Brassica napus L. to Plasmodiophora brassicae. Eur. J. Plant Pathol. 2016;145:601–613. doi: 10.1007/s10658-016-0877-y. DOI

Jahn L., Mucha S., Bergmann S., Horn C., Siemens J., Staswick P., Steffens B., Ludwig-Müller J. The clubroot pathogen (Plasmodiophora brassicae) influences auxin signaling to regulate auxin homeostasis. Plants. 2013;2:726–749. doi: 10.3390/plants2040726. PubMed DOI PMC

Irani S., Trost B., Waldner M., Nayidu N., Tu J.Y., Kusalik A.J., Todd C.D., Wei Y.D., Bonham-Smith W.C. Transcriptome analysis of response to Plasmodiophora brassicae infection in the Arabidopsis shoot and root. BMC Genom. 2018;19:23. doi: 10.1186/s12864-017-4426-7. PubMed DOI PMC

Ludwig-Müller J. Plant defence—What can we learn from clubroots? Austral. Plant Pathol. 2009;38:318–324. doi: 10.1071/AP09020. DOI

Ishikawa T., Okazaki K., Kuroda H., Itoh K., Mitsui T., Hori H. Molecular cloning of Brassica rapa nitrilases and their expression during clubroot development. Mol. Plant Pathol. 2007;8:623–637. doi: 10.1111/j.1364-3703.2007.00414.x. PubMed DOI

Ando S., Tsushima S., Kamachi S., Konagaya K.I., Tabei Y. Alternative transcription initiation of the nitrilase gene (BrNIT2) caused by infection with Plasmodiophora brassicae Woron. in Chinese cabbage (Brassica rapa L.) Plant Mol. Biol. 2008;68:557–569. doi: 10.1007/s11103-008-9390-9. PubMed DOI

Liu Y., Yin Y.-P., Wang Z.-K., Luo Y.-L. Expression of nitrilases in Brassica juncea var. tumida Tsen in root galls caused by Plasmodiophora brassicae. J. Integr. Agric. 2012;11:100–108. doi: 10.1016/S1671-2927(12)60787-1. DOI

Grsic-Rausch S., Kobelt P., Siemens J., Bischoff M., Ludwig-Müller J. Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis thaliana. Plant Physiol. 2000;122:369–378. doi: 10.1104/pp.122.2.369. PubMed DOI PMC

Ludwig-Müller J., Pieper K., Ruppel M., Cohen J.D., Epstein E., Kiddle G., Bennett R. Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana (L.) Heynh. glucosinolate mutants and the development of the clubroot disease. Planta. 1999;208:409–419. doi: 10.1007/s004250050576. PubMed DOI

Zhang X., Liu Y., Fang Z., Li Z., Yang L., Zhuang M., Zhang Y., Lv H. Comparative transcriptome analysis between broccoli (Brassica oleracea var. italica) and wild cabbage (Brassica macrocarpa Guss.) in response to Plasmodiophora brassicae during different infection stages. Front. Plant Sci. 2016;7:1929. doi: 10.3389/fpls.2016.01929. PubMed DOI PMC

Lebel E., Heifetz P., Thorne L., Uknes S., Ryals J., Ward E. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J. 1998;16:223–233. doi: 10.1046/j.1365-313x.1998.00288.x. PubMed DOI

Ludwig-Müller J., Schubert B., Pieper K., Ihmig S., Hilgenberg W. Glucosinolate content in susceptible and resistant Chinese cabbage varieties during development of clubroot disease. Phytochemistry. 1997;44:407–414. doi: 10.1016/S0031-9422(96)00498-0. DOI

Knaust A., Ludwig-Müller J. The ethylene signaling pathway is needed to restrict root gall growth in Arabidopsis after infection with the obligate biotrophic protist Plasmodiophora brassicae. J. Plant Growth Regul. 2013;32:9–21. doi: 10.1007/s00344-012-9271-y. DOI

Agarwal A., Kaul V., Faggian R., Rookes J.E., Ludwig-Müller J., Cahill D.M. Analysis of global host gene expression during the primary phase of the Arabidopsis thaliana-Plasmodiophora brassicae interaction. Funct. Plant. Biol. 2011;38:462–478. doi: 10.1071/FP11026. PubMed DOI

Lovelock D.A., Donald C.E., Conlan X.A., Cahill D.M. Salicylic acid suppression of clubroot in broccoli (Brassicae oleracea var. italica) caused by the obligate biotroph Plasmodiophora brassicae. Austral. Plant Pathol. 2013;42:141–153. doi: 10.1007/s13313-012-0167-x. DOI

Ludwig-Müller J., Jülke S., Geiß K., Richter F., Sola I., Rusak G., Mithöfer A., Keenan S., Bulman S. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid. Mol. Plant Pathol. 2015;16:349–364. doi: 10.1111/mpp.12185. PubMed DOI PMC

Bulman S., Richter F., Marschollek S., Benade F., Jülke S., Ludwig-Müller J. Arabidopsis thaliana expressing PbBSMT, a gene encoding a SABATH-type methyltransferase from the plant pathogenic protist Plasmodiophora brassicae, show leaf chlorosis and altered host susceptibility. Plant Biol. J. 2018 doi: 10.1111/plb.12728. PubMed DOI

Djavaheri M., Ma L., Klessig D.F., Mithöfer A., Gropp G., Borhan M.H. Mimicking the host regulation of SA: A virulence strategy by the clubroot pathogen Plasmodiophora brassicae. Mol. Plant Microbe Interact. 2018 doi: 10.1094/MPMI-07-18-0192-R. PubMed DOI

Vlot A.C., Dempsey D.A., Klessig D.F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 2009;47:177–206. doi: 10.1146/annurev.phyto.050908.135202. PubMed DOI

Manoharan R., Shanmugam A., Hwang I., Park J.-I., Nou I.-S. Expression of salicylic acid-related genes in Brassica oleracea var. capitata during Plasmodiophora brassicae infection. Genome. 2016;59:379–391. doi: 10.1139/gen-2016-0018. PubMed DOI

Williams P.H. A system for the determination of races of Plasmodiophora brassicae that infect cabbage and rutabaga. Phytopathology. 1966;56:624–626.

Tewari J.P., Strelkov S.E., Orchard D., Hartman M., Lange R.M., Turkington T.K. Identification of clubroot of crucifers on canola (Brassica napus) in Alberta. Can. J. Plant Pathol. 2005;27:143–144. doi: 10.1080/07060660509507206. DOI

Strelkov S.E., Tewari J.P., Smith-Degenhardt E. Characterization of Plasmodiophora brassicae populations from Alberta, Canada. Can. J. Plant Pathol. 2006;28:467–474. doi: 10.1080/07060660609507321. DOI

Kuginuki Y., Yoshikawa H., Hirai M. Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot- resistant cultivars of Chinese cabbage (Brassica rapa L. ssp. pekinesis). Eur. J. Plant Pathol. 1999;105:327–332. doi: 10.1023/A:1008705413127. DOI

Horiuchi S., Hori M. A simple greenhouse technique for obtaining high levels of clubroot incidence. Bull. Chugoku Natl. Agric. Exp. Stn. Ser. E. 1980;17:33–55.

Dobrev P.I., Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI

Dobrev P.I., Vankova R. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. In: Shabala S., Cuin T., editors. Plant Salt Tolerance. Methods in Molecular Biology (Methods and Protocols) Volume 913. Humana Press; Totowa, NJ, USA: 2012. pp. 251–261. PubMed

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Joshi R.K., Megha S., Rahman M.H., Basu U., Kav N.N. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Gene. 2016;590:57–67. doi: 10.1016/j.gene.2016.06.003. PubMed DOI

Liang Y., Strelkov S.E., Kav N.N.V. Oxalic acid-mediated stress responses in Brassica napus L. Proteomics. 2009;9:3156–3173. doi: 10.1002/pmic.200800966. PubMed DOI

Liu F., Li X., Wang M., Wen J., Yi B., Shen J., Ma C., Fu T., Tu J. Interactions of WRKY 15 and WRKY 33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection. Plant Biotechnol. J. 2018;16:911–925. doi: 10.1111/pbi.12838. PubMed DOI PMC

Rodriguez-Sanz H., Solis M.T., Lopez M.F., Gomez-Cadenas A., Risueno M.C., Testillano P.S. Auxin biosynthesis, accumulation, action and transport are involved in stress-induced microspore embryogenesis initiation and progression in Brassica napus. Plant Cell Physiol. 2015;56:1401–1417. doi: 10.1093/pcp/pcv058. PubMed DOI

Šasek V., Novakova M., Jindrichova B., Boka K., Valentova O., Burketova L. Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete Leptosphaeria maculans triggers salicylic acid and ethylene signaling in Brassica napus. Mol. Plant Microbe Interact. 2012;25:1238–1250. doi: 10.1094/MPMI-02-12-0033-R. PubMed DOI

Song J., Jiang L., Jameson P.E. Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase, and amino acid permease gene family members in leaf, flower, silique, and seed development. J. Exp. Bot. 2015;66:5067–5082. doi: 10.1093/jxb/erv133. PubMed DOI PMC

Zhou T., Hua Y., Huang Y., Ding G., Shi L., Xu F. Physiological and transcriptional analyses reveal differential phytohormone responses to boron deficiency in Brassica napus genotypes. Front. Plant Sci. 2016;7:221. doi: 10.3389/fpls.2016.00221. PubMed DOI PMC

Pontius J., Wagner L., Schuler G. The NCBI Handbook. National Center for Biotechnology Information; Bethesda, MD, USA: 2003.

Untergasser A., Nijveen H., Rao X., Bisseling T., Geurts R., Leunissen J.A. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007;35:W71–W74. doi: 10.1093/nar/gkm306. PubMed DOI PMC

Zuker M., Mathews D.H., Turner D.H. Algorithms and thermodynamics for RNA secondary structure prediction: A practical guide. In: Barciszewski J., Clark B.F.C., editors. RNA Biochemistry and Biotechnology. Volume 70. Springer; Dordrecht, The Netherlands: 1999.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...