Novel Insights into the Effect of Pythium Strains on Rapeseed Metabolism
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
TJ01000451
Technology Agency of the Czech Republic
1304119
Grantová Agentura, Univerzita Karlova
SVV260427/2020
Grantová Agentura, Univerzita Karlova
PubMed
32992822
PubMed Central
PMC7650609
DOI
10.3390/microorganisms8101472
PII: microorganisms8101472
Knihovny.cz E-resources
- Keywords
- Pythium, cultivation medium, enzyme activities, phytohormones, plant metabolism, rapeseed, secretome,
- Publication type
- Journal Article MeSH
Pythium oligandrum is a unique biological control agent. This soil oomycete not only acts as a mycoparasite, but also interacts with plant roots and stimulates plant defense response via specific elicitors. In addition, P. oligandrum can synthetize auxin precursors and stimulate plant growth. We analyzed the secretomes and biochemical properties of eleven Pythium isolates to find a novel and effective strain with advantageous features for plants. Our results showed that even closely related P. oligandrum isolates significantly differ in the content of compounds secreted into the medium, and that all strains secrete proteins, amino acids, tryptamine, phenolics, and hydrolytic enzymes capable of degrading cell walls (endo-β-1,3-glucanase, chitinase, and cellulase), exoglycosidases (especially β-glucosidase), proteases, and phosphatases. The most different strain was identified as a not yet described Pythium species. The changes in metabolism of Brassica napus plants grown from seeds coated with the tested Pythium spp. were characterized. Enhanced levels of jasmonates, ethylene precursor, and salicylic acid may indicate better resistance to a wide variety of pathogens. Glucosinolates, as defense compounds against insects and herbivores, were enhanced in young plants. Altogether, P. oligandrum strains varied in their life strategies, and either they could perform equally as plant growth promoters and mycoparasites or they had developed one of these strategies better.
Biopreparáty spol s r o Tylišovská 1 160 00 Prague 6 Czech Republic
Department of Botany Faculty of Science Charles University Benátská 2 128 01 Prague 2 Czech Republic
See more in PubMed
Gerbore J., Benhamou N., Vallance J., Le Floch G., Grizard D., Regnault-Roger C., Rey P. Biological control of plant pathogens: Advantages and limitations seen through the case study of Pythium oligandrum. Environ. Sci. Pollut. Res. Int. 2014;21:4847–4860. doi: 10.1007/s11356-013-1807-6. PubMed DOI
Sivan A., Elad Y., Chet I. Biological control effects of a new isolate of Trichoderma harzianum on Pythium aphanidermatum. Phytopathology. 1984;74:498–501. doi: 10.1094/Phyto-74-498. DOI
Benhamou N., le Floch G., Vallance J., Gerbore J., Grizard D., Rey P. Pythium oligandrum: An example of opportunistic success. Microbiology. 2012;158:2679–2694. doi: 10.1099/mic.0.061457-0. PubMed DOI
Gabrielova A., Mencl K., Suchanek M., Klimes R., Hubka V., Kolarik M. The oomycete Pythium oligandrum can suppress and kill the causative agents of dermatophytoses. Mycopathologia. 2018;183:751–764. doi: 10.1007/s11046-018-0277-2. PubMed DOI PMC
Kushwaha S.K., Vetukuri R.R., Grenville-Briggs L.J. Draft genome sequence of the mycoparasitic oomycete Pythium periplocum strain CBS 532.74. Genome Announc. 2017;5:e00057–17. doi: 10.1128/genomeA.00057-17. PubMed DOI PMC
Ponchet M., Panabieres F., Milat M.L., Mikes V., Montillet J.L., Suty L., Triantaphylides C., Tirilly Y., Blein J.P. Are elicitins cryptograms in plant-Oomycete communications? Cell Mol. Life Sci. 1999;56:1020–1047. doi: 10.1007/s000180050491. PubMed DOI PMC
Masunaka A., Sekiguchi H., Takahashi H., Takenaka S. Distribution and expression of elicitin-like protein genes of the biocontrol agent Pythium oligandrum. J. Phytopathol. 2010;158:417–426. doi: 10.1111/j.1439-0434.2009.01641.x. DOI
Le Floch G., Rey P., Benizri E., Benhamou N., Tirilly Y. Impact of auxin-compounds produced by the antagonistic fungus Pythium oligandrum or the minor pathogen Pythium group F on plant growth. Plant Soil. 2003;257:459–470. doi: 10.1023/A:1027330024834. DOI
Whipps J.M. Effect of media on growth and interactions between a range of soil-born glasshouse pathogens and antagonistic fungi. New Phytol. 1987;107:127–142. doi: 10.1111/j.1469-8137.1987.tb04887.x. DOI
Vesely D. Studies of the mycoparasitism in rhizosphere of emerging sugar-beet. Zentralbl. Bakteriol. Naturwiss. 1978;133:195–200. doi: 10.1016/S0323-6056(78)80001-9. PubMed DOI
Hyde K.D., Nilsson R.H., Alias S.A., Ariyawansa H.A., Blair J.E., Cai L., de Cock A.W., Dissanayake A.J., Glockling S.L., Goonasekara I.D. One stop shop: Backbones trees for important phytopathogenic genera: I. Fungal Divers. 2014;67:21–125. doi: 10.1007/s13225-014-0298-1. DOI
Robideau G.P., De Cock A.W., Coffey M.D., Voglmayr H., Brouwer H., Bala K., Chitty D.W., Desaulniers N., Eggertson Q.A., Gachon C.M., et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol. Ecol. Resour. 2011;11:1002–1011. doi: 10.1111/j.1755-0998.2011.03041.x. PubMed DOI PMC
White T.J., Bruns T., Lee S., Taylor J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc.; New York, NY, USA: 1990. pp. 315–322.
Chen J., Lü L., Ye W., Wang Y.-C., Zheng X.-B. Pythium cedri sp. nov. (Pythiaceae, Pythiales) from southern China based on morphological and molecular characters. Phytotaxa. 2017;309:135–142. doi: 10.11646/phytotaxa.309.2.4. DOI
Faure C., Veyssiere M., Boelle B., San Clemente H., Bouchez O., Lopez-Roques C., Chaubet A., Martinez Y., Bezouska K., Suchanek M., et al. Long-read genome sequence of the sugar beet rhizosphere mycoparasite Pythium oligandrum. G3 Genes Genom. Genet. 2020;10:431–436. doi: 10.1534/g3.119.400746. PubMed DOI PMC
Berger H., Yacoub A., Gerbore J., Grizard D., Rey P., Sessitsch A., Compant S. Draft genome sequence of biocontrol agent Pythium oligandrum strain Po37, an Oomycota. Genome Announc. 2016;4:e00215–00216. doi: 10.1128/genomeA.00215-16. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Schagger H. Tricine-SDS-PAGE. Nat. Protoc. 2006;1:16–22. doi: 10.1038/nprot.2006.4. PubMed DOI
Laemmli U.K. Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Hodek O., Krizek T., Coufal P., Ryslava H. Design of experiments for amino acid extraction from tobacco leaves and their subsequent determination by capillary zone electrophoresis. Anal. Bional. Chem. 2017;409:2383–2391. doi: 10.1007/s00216-017-0184-2. PubMed DOI
Dudonne S., Vitrac X., Coutiere P., Woillez M., Merillon J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009;57:1768–1774. doi: 10.1021/jf803011r. PubMed DOI
Tupec M., Hyskova V., Belonoznikova K., Hranicek J., Cerveny V., Ryslava H. Characterization of some potential medicinal plants from Central Europe by their antioxidant capacity and the presence of metal elements. Food Biosci. 2017;20:43–50. doi: 10.1016/j.fbio.2017.08.001. DOI
Dobrev P.I., Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI
Dobrev P.I., Vankova R. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 2012;913:251–261. doi: 10.1007/978-1-61779-986-0_17. PubMed DOI
Prerostova S., Dobrev P.I., Konradyova V., Knirsch V., Gaudinova A., Kramna B., Kazda J., Ludwig-Muller J., Vankova R. Hormonal responses to Plasmodiophora brassicae infection in Brassica napus cultivars differing in their pathogen resistance. Int. J. Mol. Sci. 2018;19:4024. doi: 10.3390/ijms19124024. PubMed DOI PMC
Lechtenberg M., Hensel A. Determination of glucosinolates in broccoli-based dietary supplements by cyclodextrin-mediated capillary zone electrophoresis. J. Food Compos. Anal. 2019;78:138–149. doi: 10.1016/j.jfca.2019.02.007. DOI
Hyskova V., Pliskova V., Cerveny V., Ryslava H. NADP-dependent enzymes are involved in response to salt and hypoosmotic stress in cucumber plants. Gen. Physiol. Biophys. 2017;36:247–258. doi: 10.4149/gpb_2016053. PubMed DOI
Yannarelli G.G., Fernandez-Alvarez A.J., Santa-Cruz D.M., Tomaro M.L. Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry. 2007;68:505–512. doi: 10.1016/j.phytochem.2006.11.016. PubMed DOI
Coelho D.F., Saturnino T.P., Fernandes F.F., Mazzola P.G., Silveira E., Tambourgi E.B. Azocasein substrate for determination of proteolytic activity: Reexamining a traditional method using bromelain samples. BioMed Res. Int. 2016;2016:ID8409183. doi: 10.1155/2016/8409183. PubMed DOI PMC
Nakata H., Ishii S. Substrate activation of trypsin and acetyltrypsin caused by -N-benzoyl-L-arginine p-nitroanilide. J. Biochem. 1972;72:281–290. doi: 10.1093/oxfordjournals.jbchem.a129907. PubMed DOI
Anthon G.E., Barrett D.M. Determination of reducing sugars with 3-methyl-2-benzothiazolinonehydrazone. Anal. Biochem. 2002;305:287–289. doi: 10.1006/abio.2002.5644. PubMed DOI
Maseko S.T., Dakora F.D. Rhizosphere acid and alkaline phosphatase activity as a marker of P nutrition in nodulated Cyclopia and Aspalathus species in the Cape fynbos of South Africa. S. Afr. J. Bot. 2013;89:289–295. doi: 10.1016/j.sajb.2013.06.023. DOI
Beauchamp C., Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971;44:276–287. doi: 10.1016/0003-2697(71)90370-8. PubMed DOI
Synkova H., Semoradova S., Schnablova R., Muller K., Pospisilova J., Ryslava H., Malbeck J., Cerovska N. Effects of biotic stress caused by Potato virus Y on photosynthesis in ipt transgenic and control Nicotiana tabacum L. Plant Sci. 2006;171:607–616. doi: 10.1016/j.plantsci.2006.06.002. DOI
Spoustova P., Hyskova V., Muller K., Schnablova R., Ryslava H., Cerovska N., Malbeck J., Cvikrova M., Synkova H. Tobacco susceptibility to Potato virus Y-NTN infection is affected by grafting and endogenous cytokinin content. Plant Sci. 2015;235:25–36. doi: 10.1016/j.plantsci.2015.02.017. PubMed DOI
Plaats-Niterink A.J.v.d. Monograph of the genus Pythium. Stud. Mycol. 1981;21:1–244.
McGowan J., Fitzpatrick D.A. Genomic, network, and phylogenetic analysis of the oomycete effector arsenal. MSphere. 2017;2:e00408–17. doi: 10.1128/mSphere.00408-17. PubMed DOI PMC
Judelson H.S. Metabolic diversity and novelties in the oomycetes. Annu. Rev. Microbiol. 2017;71:21–39. doi: 10.1146/annurev-micro-090816-093609. PubMed DOI
Brunner F., Wirtz W., Rose J.K., Darvill A.G., Govers F., Scheel D., Nurnberger T. A beta-glucosidase/xylosidase from the phytopathogenic oomycete, Phytophthora infestans. Phytochemistry. 2002;59:689–696. doi: 10.1016/S0031-9422(02)00045-6. PubMed DOI
Bowyer P., Clarke B.R., Lunness P., Daniels M.J., Osbourn A.E. Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science. 1995;267:371–374. doi: 10.1126/science.7824933. PubMed DOI
Crombie W.M.L., Crombie L., Green J.B., Lucas J.A. Pathogenicity of ‘take-all’ fungus to oats: Its relationship to the concentration and detoxification of the four avenacins. Phytochemistry. 1986;25:2075–2083. doi: 10.1016/0031-9422(86)80069-3. DOI
Ivanov D.A., Bernards M.A. Ginsenosidases and the pathogenicity of Pythium irregulare. Phytochemistry. 2012;78:44–53. doi: 10.1016/j.phytochem.2012.02.024. PubMed DOI
Brzobohaty B., Moore I., Kristoffersen P., Bako L., Campos N., Schell J., Palme K. Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science. 1993;262:1051–1054. doi: 10.1126/science.8235622. PubMed DOI
Le Roy J., Huss B., Creach A., Hawkins S., Neutelings G. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front. Plant Sci. 2016;7:735. doi: 10.3389/fpls.2016.00735. PubMed DOI PMC
Ma Y. Seed coating with beneficial microorganisms for precision agriculture. Biotechnol. Adv. 2019;37:1–11. doi: 10.1016/j.biotechadv.2019.107423. PubMed DOI
Tsuda K. Division of Tasks: Defense by the Spatial Separation of Antagonistic Hormone Activities. Plant Cell Physiol. 2017;54:3–4. doi: 10.1093/pcp/pcx208. PubMed DOI
Pieterse C.M., Van der Does D., Zamioudis C., Leon-Reyes A., Van Wees S.C. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012;28:489–521. doi: 10.1146/annurev-cellbio-092910-154055. PubMed DOI
Kawamura Y., Takenaka S., Hase S., Kubota M., Ichinose Y., Kanayama Y., Nakaho K., Klessig D.F., Takahashi H. Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Plant Cell Physiol. 2009;50:924–934. doi: 10.1093/pcp/pcp044. PubMed DOI
Takenaka S., Yamaguchi K., Masunaka A., Hase S., Inoue T., Takahashi H. Implications of oligomeric forms of POD-1 and POD-2 proteins isolated from cell walls of the biocontrol agent Pythium oligandrum in relation to their ability to induce defense reactions in tomato. J. Plant Physiol. 2011;168:1972–1979. doi: 10.1016/j.jplph.2011.05.011. PubMed DOI
Bjorkman M., Klingen I., Birch A.N., Bones A.M., Bruce T.J., Johansen T.J., Meadow R., Molmann J., Seljasen R., Smart L.E., et al. Phytochemicals of Brassicaceae in plant protection and human health-influences of climate, environment and agronomic practice. Phytochemistry. 2011;72:538–556. doi: 10.1016/j.phytochem.2011.01.014. PubMed DOI
Ishikawa S., Maruyama A., Yamamoto Y., Hara S. Extraction and characterization of glucosinolates and isothiocyanates from rape seed meal. J. Oleo Sci. 2014;63:303–308. doi: 10.5650/jos.ess13170. PubMed DOI
Schaefer H.L., Brandes H., Ulber B., Becker H.C., Vidal S. Evaluation of nine genotypes of oilseed rape (Brassica napus L.) for larval infestation and performance of rape stem weevil (Ceutorhynchus napi Gyll.) PLoS ONE. 2017;12:e0180807. doi: 10.1371/journal.pone.0180807. PubMed DOI PMC
Angelino D., Dosz E.B., Sun J., Hoeflinger J.L., Van Tassell M.L., Chen P., Harnly J.M., Miller M.J., Jeffery E.H. Myrosinase-dependent and -independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Front. Plant Sci. 2015;6:831. doi: 10.3389/fpls.2015.00831. PubMed DOI PMC
Halkier B.A., Gershenzon J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006;57:303–333. doi: 10.1146/annurev.arplant.57.032905.105228. PubMed DOI
Wittstock U., Kliebenstein D.J., Lambrix V., Reichelt M., Gershenzon J. Chapter five Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. Recent Adv. Phytochem. 2003;37:101–125. doi: 10.1016/S0079-9920(03)80020-5. DOI
Brader G., Mikkelsen M.D., Halkier B.A., Tapio Palva E. Altering glucosinolate profiles modulates disease resistance in plants. Plant J. 2006;46:758–767. doi: 10.1111/j.1365-313X.2006.02743.x. PubMed DOI
Giamoustaris A., Mithen R. Glucosinolates and disease resistance in oilseed rape (Brassica napus ssp. oleifera) Plant Pathol. 1997;46:271–275. doi: 10.1046/j.1365-3059.1997.d01-222.x. DOI
Schlaeppi K., Abou-Mansour E., Buchala A., Mauch F. Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant J. 2010;62:840–851. doi: 10.1111/j.1365-313X.2010.04197.x. PubMed DOI
Surface properties of mycoparasitic Pythium species and their interaction with model materials