Surface properties of mycoparasitic Pythium species and their interaction with model materials

. 2024 Jun 15 ; 10 (11) : e31800. [epub] 20240523

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38867954
Odkazy

PubMed 38867954
PubMed Central PMC11167301
DOI 10.1016/j.heliyon.2024.e31800
PII: S2405-8440(24)07831-9
Knihovny.cz E-zdroje

Pythium oligandrum, a soil-born oomycete, is an effective biological control agent exhibiting antagonistic and parasitic activity against pathogenic fungi. This study is the first attempt to characterize its surface properties and to apply models of physicochemical interactions (thermodynamic, DLVO and XDLVO) to quantify its adhesion properties to a model material, represented by magnetic beads (MB). The predictions of interaction models were based on experimental data (contact angles, zeta potentials, size). Adhesion intensities (AI) were determined experimentally taking advantage of MB with different surface properties. The role of weak physicochemical interactions was estimated by comparing experimental AI with model predictions. The results revealed that the surface properties of the three Pythium spp. studied were very similar and fell within the range for hydrophilic microorganisms (ΔGTOT > 0) with a predominantly negative surface charge. The most reliable description of AI was obtained using the DLVO model, including Lifshitz-van der Waals and electrostatic interactions. The highest AI between Pythium spp. and all three MB was observed at pH 3, which was supported by the DLVO prediction. The greater agreement between the sphere-sphere geometric version of the DLVO model and experiment suggests that the surface protrusions of the oospores increase the efficiency of adhesion. The surface properties of the pathogenic fungi, characterized in this work, fell within the range defined by MB and therefore it can be expected that their physicochemical interactions with Pythium spp. will also be favourable.

Zobrazit více v PubMed

HLPE . 2019. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems that Enhance Food Security and Nutrition.

Commission E. COM; 2020. On the Experience Gained by Member States on the Implementation of National Targets Established in Their National Action Plans and on Progress in the Implementation of Directive 2009/128/EC on the Sustainable Use of Pesticides; p. 204. final, 2020.

Brožová J. Exploitation of the mycoparasitic fungus Pythium oligandrum in plant protection - a review. Plant Protect. Sci. 2002;38:30–35.

Benhamou N., le Floch G., Vallance J., Gerbore J., Grizard D., Rey P. Pythium oligandrum: an example of opportunistic success. Microbiology (Read.) 2012;158:2679–2694. PubMed

Takenaka S. Studies on biological control mechanisms of Pythium oligandrum. J. Gen. Plant Pathol. 2015;81:466–469.

Benhamou N., Rey P., Picard K., Tirilly Y. Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology. 1999;89:506–517. PubMed

Ikeda S., Shimizu A., Shimizu M., Takahashi H., Takenaka S. Biocontrol of black scurf on potato by seed tuber treatment with Pythium oligandrum. Biol. Control. 2012;60:297–304.

Bělonožníková K., Hýsková V., Chmelík J., Kavan D., Čeřovská N., Ryšlavá H. Pythium oligandrum in plant protection and growth promotion: secretion of hydrolytic enzymes, elicitors and tryptamine as auxin precursor. Microbiol. Res. 2022;258 PubMed

Commission E. In: Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 Implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as Regards the List of Approved Active Substances Text with EEA Relevance. C.I.R. (EU), editor. 2011. No 540/2011.

Commission E. 2009. Regulation (EU) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. No 1223/2009.

Commission E. In: Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products. Parliament E., editor. 2012. No 528/2012European Parliament.

Picard K., Tirilly Y., Benhamou N. Cytological effects of cellulases in the parasitism of Phytophthora parasitica by Pythium oligandrum. Appl. Environ. Microbiol. 2000;66:4305–4314. PubMed PMC

Galiana E., Fourré S., Engler G. Phytophthora parasitica biofilm formation: installation and organization of microcolonies on the surface of a host plant. Environ. Microbiol. 2008;10:2164–2171. PubMed

van Oss C.J. Hydrophobicity of biosurfaces – origin, quantitative determination and interaction energies. Colloids Surf. B Biointerfaces. 1995;5:91–110.

Bos R., van der Mei H.C., Busscher H.J. Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev. 1999;23:179–230. PubMed

van Oss C.J. Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J. Mol. Recogn. 2003;16:177–190. PubMed

Brányik T., Vicente A., Cruz J.M., Teixeira J. Spent grains - a new support for brewing yeast immobilisation. Biotechnol. Lett. 2001;23:1073–1078.

Strejc J., Kyselova L., Cadkova A., Potocar T., Branyik T. Physico-chemical approach to adhesion of Alicyclobacillus cells and spores to model solid materials. Extremophiles. 2019;23:219–227. PubMed

Bělonožníková K., Hýsková V., Vašková M., Křížek T., Čokrtová K., Vaněk T., Halířová L., Chudý M., Žufić A., Ryšlavá H. Seed protection of Solanum lycopersicum with Pythium oligandrum against Alternaria brassicicola and Verticillium albo-atrum. Microorganisms. 2022;10:1348. PubMed PMC

Haghi Z., Mostowfizadeh-Ghalamfarsa R., Steinberg C. The efficacy of Iranian Pythium oligandrum isolates in biocontrol of soil-borne fungal pathogens of tomato. J. Plant Pathol. 2023;105:185–196.

Klimek-Kopyra A., Dłużniewska J., Sikora A. Influence of biofungicides containing microorganisms such as Pythium oligandrum and Bacillus subtilis on yield, morphological parameters, and pathogen suppression in six winter pea cultivars. Agriculture. 2023;13:1170.

Ng C.A., Pernica M., Yap J., Běláková S., Vaculová K., Brányik T. Biocontrol effect of Pythium oligandrum on artificial Fusarium culmorum infection during malting of wheat. J. Cereal. Sci. 2021;100:103258.

Ng C.A., Pernica M., Litvanova K., Kolouchova I., Branyik T. Biocontrol using Pythium oligandrum during malting of Fusarium-contaminated barley. Fermentation. 2023;9:257.

Kalia S., Thakur K., Celli A., Kiechel M.A., Schauer C.L. Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: a review. J. Environ. Chem. Eng. 2013;1:97–112.

Fernández V., Bahamonde H.A., Javier Peguero-Pina J., Gil-Pelegrín E., Sancho-Knapik D., Gil L., Goldbach H.E., Eichert T. Physico-chemical properties of plant cuticles and their functional and ecological significance. J. Exp. Bot. 2017;68:5293–5306. PubMed

Brányik T., Vicente A., Oliveira R., Teixeira J. Physicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor. Biotechnol. Bioeng. 2004;88:84–93. PubMed

Smits T.H.M., Wick L.Y., Harms H., Keel C. Characterization of the surface hydrophobicity of filamentous fungi. Environ. Microbiol. 2003;5:85–91. PubMed

El Abed S., Hamadi F., Latrache H., Iraqui H.M., Ibnsouda K.S. Adhesion of Aspergillus niger and Penicillium expansumspores on Fez cedar wood substrata. Ann. Microbiol. 2010;60:377–382.

Bělonožníková K., Vaverová K., Vaněk T., Kolařík M., Hýsková V., Vaňková R., Dobrev P., Křížek T., Hodek O., Čokrtová K., Štípek A., Ryšlavá H. Novel insights into the effect of Pythium strains on rapeseed metabolism. Microorganisms. 2020;8:1472. PubMed PMC

Liu Y., Yang S.F., Li Y., Xu H., Qin L., Tay J.H. The influence of cell and substratum surface hydrophobicities on microbial attachment. J. Biotechnol. 2004;110:251–256. PubMed

Sirmerova M., Prochazkova G., Siristova L., Kolska Z., Branyik T. Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions. J. Appl. Phycol. 2013;25:1687–1695.

van der Mei H.C., Bos R., Busscher H.J. A reference guide to microbial cell surface hydrophobicity based on contact angles. Colloids Surf. B Biointerfaces. 1998;11:213–221.

Yongabi D., Jooken S., Givanoudi S., Khorshid M., Deschaume O., Bartic C., Losada-Pérez P., Wübbenhorst M., Wagner P. Ionic strength controls long-term cell-surface interactions – a QCM-D study of S. cerevisiae adhesion, retention and detachment. J. Colloid Interface Sci. 2021;585:583–595. PubMed

Hermansson M. The DLVO theory in microbial adhesion. Colloids Surf. B Biointerfaces. 1999;14:105–119.

Sayano A., Ohshima H., Hoshina T., Tsurumi T. What in particle morphology determines the DLVO interaction energy between hematite particles in electrolyte solutions? Colloids Surf. A Physicochem. Eng. Asp. 2023;664

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...