Surface properties of mycoparasitic Pythium species and their interaction with model materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38867954
PubMed Central
PMC11167301
DOI
10.1016/j.heliyon.2024.e31800
PII: S2405-8440(24)07831-9
Knihovny.cz E-zdroje
- Klíčová slova
- (X)DLVO model, Adhesion, Model materials, Pythium species, Surface interaction, Thermodynamic model,
- Publikační typ
- časopisecké články MeSH
Pythium oligandrum, a soil-born oomycete, is an effective biological control agent exhibiting antagonistic and parasitic activity against pathogenic fungi. This study is the first attempt to characterize its surface properties and to apply models of physicochemical interactions (thermodynamic, DLVO and XDLVO) to quantify its adhesion properties to a model material, represented by magnetic beads (MB). The predictions of interaction models were based on experimental data (contact angles, zeta potentials, size). Adhesion intensities (AI) were determined experimentally taking advantage of MB with different surface properties. The role of weak physicochemical interactions was estimated by comparing experimental AI with model predictions. The results revealed that the surface properties of the three Pythium spp. studied were very similar and fell within the range for hydrophilic microorganisms (ΔGTOT > 0) with a predominantly negative surface charge. The most reliable description of AI was obtained using the DLVO model, including Lifshitz-van der Waals and electrostatic interactions. The highest AI between Pythium spp. and all three MB was observed at pH 3, which was supported by the DLVO prediction. The greater agreement between the sphere-sphere geometric version of the DLVO model and experiment suggests that the surface protrusions of the oospores increase the efficiency of adhesion. The surface properties of the pathogenic fungi, characterized in this work, fell within the range defined by MB and therefore it can be expected that their physicochemical interactions with Pythium spp. will also be favourable.
Department of Biotechnology University of Chemistry and Technology Prague Technická 5 Czech Republic
Research Institute of Brewing and Malting Lípová 15 120 44 Prague Czech Republic
Zobrazit více v PubMed
HLPE . 2019. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems that Enhance Food Security and Nutrition.
Commission E. COM; 2020. On the Experience Gained by Member States on the Implementation of National Targets Established in Their National Action Plans and on Progress in the Implementation of Directive 2009/128/EC on the Sustainable Use of Pesticides; p. 204. final, 2020.
Brožová J. Exploitation of the mycoparasitic fungus Pythium oligandrum in plant protection - a review. Plant Protect. Sci. 2002;38:30–35.
Benhamou N., le Floch G., Vallance J., Gerbore J., Grizard D., Rey P. Pythium oligandrum: an example of opportunistic success. Microbiology (Read.) 2012;158:2679–2694. PubMed
Takenaka S. Studies on biological control mechanisms of Pythium oligandrum. J. Gen. Plant Pathol. 2015;81:466–469.
Benhamou N., Rey P., Picard K., Tirilly Y. Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology. 1999;89:506–517. PubMed
Ikeda S., Shimizu A., Shimizu M., Takahashi H., Takenaka S. Biocontrol of black scurf on potato by seed tuber treatment with Pythium oligandrum. Biol. Control. 2012;60:297–304.
Bělonožníková K., Hýsková V., Chmelík J., Kavan D., Čeřovská N., Ryšlavá H. Pythium oligandrum in plant protection and growth promotion: secretion of hydrolytic enzymes, elicitors and tryptamine as auxin precursor. Microbiol. Res. 2022;258 PubMed
Commission E. In: Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 Implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as Regards the List of Approved Active Substances Text with EEA Relevance. C.I.R. (EU), editor. 2011. No 540/2011.
Commission E. 2009. Regulation (EU) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. No 1223/2009.
Commission E. In: Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products. Parliament E., editor. 2012. No 528/2012European Parliament.
Picard K., Tirilly Y., Benhamou N. Cytological effects of cellulases in the parasitism of Phytophthora parasitica by Pythium oligandrum. Appl. Environ. Microbiol. 2000;66:4305–4314. PubMed PMC
Galiana E., Fourré S., Engler G. Phytophthora parasitica biofilm formation: installation and organization of microcolonies on the surface of a host plant. Environ. Microbiol. 2008;10:2164–2171. PubMed
van Oss C.J. Hydrophobicity of biosurfaces – origin, quantitative determination and interaction energies. Colloids Surf. B Biointerfaces. 1995;5:91–110.
Bos R., van der Mei H.C., Busscher H.J. Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev. 1999;23:179–230. PubMed
van Oss C.J. Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J. Mol. Recogn. 2003;16:177–190. PubMed
Brányik T., Vicente A., Cruz J.M., Teixeira J. Spent grains - a new support for brewing yeast immobilisation. Biotechnol. Lett. 2001;23:1073–1078.
Strejc J., Kyselova L., Cadkova A., Potocar T., Branyik T. Physico-chemical approach to adhesion of Alicyclobacillus cells and spores to model solid materials. Extremophiles. 2019;23:219–227. PubMed
Bělonožníková K., Hýsková V., Vašková M., Křížek T., Čokrtová K., Vaněk T., Halířová L., Chudý M., Žufić A., Ryšlavá H. Seed protection of Solanum lycopersicum with Pythium oligandrum against Alternaria brassicicola and Verticillium albo-atrum. Microorganisms. 2022;10:1348. PubMed PMC
Haghi Z., Mostowfizadeh-Ghalamfarsa R., Steinberg C. The efficacy of Iranian Pythium oligandrum isolates in biocontrol of soil-borne fungal pathogens of tomato. J. Plant Pathol. 2023;105:185–196.
Klimek-Kopyra A., Dłużniewska J., Sikora A. Influence of biofungicides containing microorganisms such as Pythium oligandrum and Bacillus subtilis on yield, morphological parameters, and pathogen suppression in six winter pea cultivars. Agriculture. 2023;13:1170.
Ng C.A., Pernica M., Yap J., Běláková S., Vaculová K., Brányik T. Biocontrol effect of Pythium oligandrum on artificial Fusarium culmorum infection during malting of wheat. J. Cereal. Sci. 2021;100:103258.
Ng C.A., Pernica M., Litvanova K., Kolouchova I., Branyik T. Biocontrol using Pythium oligandrum during malting of Fusarium-contaminated barley. Fermentation. 2023;9:257.
Kalia S., Thakur K., Celli A., Kiechel M.A., Schauer C.L. Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: a review. J. Environ. Chem. Eng. 2013;1:97–112.
Fernández V., Bahamonde H.A., Javier Peguero-Pina J., Gil-Pelegrín E., Sancho-Knapik D., Gil L., Goldbach H.E., Eichert T. Physico-chemical properties of plant cuticles and their functional and ecological significance. J. Exp. Bot. 2017;68:5293–5306. PubMed
Brányik T., Vicente A., Oliveira R., Teixeira J. Physicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor. Biotechnol. Bioeng. 2004;88:84–93. PubMed
Smits T.H.M., Wick L.Y., Harms H., Keel C. Characterization of the surface hydrophobicity of filamentous fungi. Environ. Microbiol. 2003;5:85–91. PubMed
El Abed S., Hamadi F., Latrache H., Iraqui H.M., Ibnsouda K.S. Adhesion of Aspergillus niger and Penicillium expansumspores on Fez cedar wood substrata. Ann. Microbiol. 2010;60:377–382.
Bělonožníková K., Vaverová K., Vaněk T., Kolařík M., Hýsková V., Vaňková R., Dobrev P., Křížek T., Hodek O., Čokrtová K., Štípek A., Ryšlavá H. Novel insights into the effect of Pythium strains on rapeseed metabolism. Microorganisms. 2020;8:1472. PubMed PMC
Liu Y., Yang S.F., Li Y., Xu H., Qin L., Tay J.H. The influence of cell and substratum surface hydrophobicities on microbial attachment. J. Biotechnol. 2004;110:251–256. PubMed
Sirmerova M., Prochazkova G., Siristova L., Kolska Z., Branyik T. Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions. J. Appl. Phycol. 2013;25:1687–1695.
van der Mei H.C., Bos R., Busscher H.J. A reference guide to microbial cell surface hydrophobicity based on contact angles. Colloids Surf. B Biointerfaces. 1998;11:213–221.
Yongabi D., Jooken S., Givanoudi S., Khorshid M., Deschaume O., Bartic C., Losada-Pérez P., Wübbenhorst M., Wagner P. Ionic strength controls long-term cell-surface interactions – a QCM-D study of S. cerevisiae adhesion, retention and detachment. J. Colloid Interface Sci. 2021;585:583–595. PubMed
Hermansson M. The DLVO theory in microbial adhesion. Colloids Surf. B Biointerfaces. 1999;14:105–119.
Sayano A., Ohshima H., Hoshina T., Tsurumi T. What in particle morphology determines the DLVO interaction energy between hematite particles in electrolyte solutions? Colloids Surf. A Physicochem. Eng. Asp. 2023;664