Physico-chemical approach to adhesion of Alicyclobacillus cells and spores to model solid materials
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
18-05007S
Grantov? Agentura ?esk? Republiky
PubMed
30656425
DOI
10.1007/s00792-019-01075-x
PII: 10.1007/s00792-019-01075-x
Knihovny.cz E-zdroje
- Klíčová slova
- Alicyclobacillus sp., Cell adhesion, Model materials, Surface interaction, XDLVO model,
- MeSH
- Alicyclobacillus chemie fyziologie MeSH
- bakteriální adheze * MeSH
- koncentrace vodíkových iontů MeSH
- povrchové vlastnosti MeSH
- spory bakteriální chemie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
Acidothermophilic bacteria of the genus Alicyclobacillus are frequent contaminants of fruit-based products. This study is the first attempt to characterize the physico-chemical surface properties of two Alicyclobacillus sp. and quantify their adhesion disposition to model materials [diethylaminoethyl (DEAE), carboxyl- and octyl-modified magnetic beads] representing materials with different surface properties used in the food industry. An insight into the mechanism of adhesion was gained through comparison of experimental adhesion intensities with predictions of a colloidal interaction model (XDLVO). Experimental data (contact angles, zeta potentials, size) on interacting surfaces (cells and materials) were used as inputs into the XDLVO model. The results revealed that the most significant adhesion occurred at pH 3. Adhesion of both vegetative cells and spores of two Alicyclobacillus sp. to all materials studied was the most pronounced under acidic conditions, and adhesion was influenced mostly by electrostatic attractions. The most intensive adhesion of vegetative cells and spores at pH 3 was observed for DEAE followed by hydrophobic octyl and hydrophilic carboxyl surfaces. Overall, the lowest rate of adhesion between cells and model materials was observed at an alkaline pH. Consequently, prevention of adhesion should be based on the use of alkaline sanitizers and/or alkaline rinse water.
Zobrazit více v PubMed
FEMS Microbiol Rev. 1999 Apr;23(2):179-230 PubMed
Lett Appl Microbiol. 2002;34(2):86-90 PubMed
Int J Food Microbiol. 2002 Jul 25;77(1-2):11-8 PubMed
Adv Colloid Interface Sci. 2002 Aug 5;98(3):341-463 PubMed
Genome Biol. 2003;4(6):219 PubMed
J Mol Recognit. 2003 Jul-Aug;16(4):177-90 PubMed
Environ Sci Technol. 2004 Mar 15;38(6):1777-85 PubMed
Crit Rev Microbiol. 2004;30(2):55-74 PubMed
Food Microbiol. 2006 Aug;23(5):439-45 PubMed
Int J Food Microbiol. 2008 Jul 15;125(2):103-10 PubMed
Int J Food Microbiol. 2010 Feb 28;137(2-3):295-8 PubMed
Food Microbiol. 2010 Dec;27(8):1016-22 PubMed
Curr Opin Biotechnol. 2011 Apr;22(2):172-9 PubMed
Food Microbiol. 2011 May;28(3):331-49 PubMed
Int J Food Microbiol. 2011 May 14;147(1):1-11 PubMed
J Food Prot. 2013 Aug;76(8):1408-13 PubMed
Colloids Surf B Biointerfaces. 2013 Dec 1;112:213-8 PubMed
Acta Biochim Pol. 2013;60(4):531-7 PubMed
J Food Prot. 2014 Aug;77(8):1418-23 PubMed
Colloids Surf B Biointerfaces. 2015 Jan 1;125:134-41 PubMed
Acta Biochim Pol. 2015;62(4):785-90 PubMed
Lett Appl Microbiol. 1997 Mar;24(3):185-9 PubMed