MATLAB Algorithms for Diameter Measurements of Textile Yarns and Fibers through Image Processing Techniques
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LTAUSA18135
The Ministry of Education, Youth and Sports in the Czech Republic under the "Inter Excellence - Action programme"
PubMed
35207840
PubMed Central
PMC8875885
DOI
10.3390/ma15041299
PII: ma15041299
Knihovny.cz E-resources
- Keywords
- Hough transform, MATLAB, diameter, fiber, hairiness, image processing, yarn, yarn’s helix model,
- Publication type
- Journal Article MeSH
Textile yarns are the fundamental building blocks in the fabric industry. The measurement of the diameter of the yarn textile and fibers is crucial in textile engineering as the diameter size and distribution can affect the yarn's properties, and image processing can provide automatic techniques for faster and more accurate determination of the diameters. In this paper, facile and new methods to measure the yarn's diameter and its individual fibers diameter based on image processing algorithms that can be applied to microscopic digital images. Image preprocessing such as binarization and morphological operations on the yarn image were used to measure the diameter automatically and accurately compared to the manual measuring using ImageJ software. In addition to the image preprocessing, the circular Hough transform was used to measure the diameter of the individual fibers in a yarn's cross-section and count the number of fibers. The algorithms were built and deployed in a MATLAB (R2020b, The MathWorks, Inc., Natick, Massachusetts, United States) environment. The proposed methods showed a reliable, fast, and accurate measurement compared to other different image measuring softwares, such as ImageJ.
See more in PubMed
Abrahart E.N., Whewell C.S. Textile—Textile Finishing Processes. [(accessed on 3 November 2021)]. Available online: https://www.britannica.com/topic/textile/Textile-finishing-processes.
Shah D.U., Schubel P.J., Clifford M.J. Modelling the effect of yarn twist on the tensile strength of unidirectional plant fibre yarn composites. J. Compos. Mater. 2013;47:425–436. doi: 10.1177/0021998312440737. DOI
Pan N., Hua T., Qiu Y. Relationship Between Fiber and Yarn Strength. Text. Res. J. 2001;71 doi: 10.1177/004051750107101105. DOI
Turan R.B., Okur A., Deveci R., Açikel M. Predicting the intra-yarn porosity by image analysis method. Text. Res. J. 2012;82 doi: 10.1177/0040517511427971. DOI
Eldessouki M., Ibrahim S., Militky J. A dynamic and robust image processing based method for measuring the yarn diameter and its variation. Text. Res. J. 2014;84 doi: 10.1177/0040517514530032. DOI
Codaro E.N., Nakazato R.Z., Horovistiz A.L., Ribeiro L.M.F., Ribeiro R.B., Hein L.R.O. An image processing method for morphology characterization and pitting corrosion evaluation. Mater. Sci. Eng. A. 2002;334:298–306. doi: 10.1016/S0921-5093(01)01892-5. DOI
Sarfraz M. Digital Imaging. IntechOpen; London, UK: 2020. Introductory Chapter: On Digital Image Processing.
Laykin S., Alchanatis V., Fallik E., Edan Y. Image-processing algorithms for tomato classification. Trans. Am. Soc. Agric. Eng. 2002;45:851–858. doi: 10.13031/2013.8838. DOI
Erhardt A., Zinser G., Komitowski D., Bille J. Reconstructing 3-D light-microscopic images by digital image processing. Appl. Opt. 1985;24:194–200. doi: 10.1364/AO.24.000194. PubMed DOI
Masselin I., Durand-Bourlier L., Laine J.M., Sizaret P.Y., Chasseray X., Lemordant D. Membrane characterization using microscopic image analysis. J. Membr. Sci. 2001;186:85–96. doi: 10.1016/S0376-7388(00)00657-8. DOI
Yoon J., Kim H., Sim S.H., Pyo S. Characterization of porous cementitious materials using microscopic image processing and X-ray CT analysis. Materials. 2020;13:3105. doi: 10.3390/ma13143105. PubMed DOI PMC
Wang L., Lu Y., Pan R., Gao W. Evaluation of yarn appearance on a blackboard based on image processing. Text. Res. J. 2021;91:2263–2271. doi: 10.1177/00405175211002863. DOI
Abd-Elhamied M.R., Hashima W.A., ElKateb S., Elhawary I., El-Geiheini A. Prediction of Cotton Yarn’s Characteristics by Image Processing and ANN. Alex. Eng. J. 2022;61:3335–3340. doi: 10.1016/j.aej.2021.08.057. DOI
Huang C.C., Liu S.C. Woven Fabric Analysis by Image Processing. Part II: Computing the Twist Angle. Text. Res. J. 2001;71:361–366. doi: 10.1177/004051750107100414. DOI
Technologies U. Think Quality—Think USTER®. [(accessed on 6 November 2021)]. Available online: https://www.uster.com/en/
Ni J., Khan Z., Wang S., Wang K., Haider S.K. Automatic detection and counting of circular shaped overlapped objects using circular hough transform and contour detection; Proceedings of the 2016 12th World Congress on Intelligent Control and Automation (WCICA); Guilin, China. 12–15 June 2016;
Elmogahzy Y. Structure and Mechanics of Textile Fibre Assemblies. 2nd ed. Woodhead Publishing; Sawston, UK: 2019. Structure and mechanics of yarns.
Lu S., Xin B., Deng N., Wang L., Wang W. Investigation of cross-sectional image analysis method to determine the blending ratio of polyester/cotton yarn. J. Microsc. 2020;279:16–25. doi: 10.1111/jmi.12892. PubMed DOI
Yang K., Tao X.M., Xu B.G., Lam J. Structure and Properties of Low Twist Short-staple Singles Ring Spun Yarns. Text. Res. J. 2007;77:675–685. doi: 10.1177/0040517507080545. DOI
Yu X.W., Wang H., Wang Z.W. Analysis of yarn fiber volume fraction in textile composites using scanning electron microscopy and X-ray micro-computed tomography. J. Reinf. Plast. Compos. 2019;38 doi: 10.1177/0731684418811943. DOI
Melenka G.W., Gholami A. Fiber identification of braided composites using micro-computed tomography. Compos. Commun. 2021;27:100813. doi: 10.1016/j.coco.2021.100813. DOI
Guo Q., Zhang Y., Li D., Guo R., Ma M., Chen L. Effect of bias yarn on tensile fracture mechanism of multiaxial 3D angle-interlock woven composites. Thin-Walled Struct. 2021;159:107269. doi: 10.1016/j.tws.2020.107269. DOI
Hough P.V.C. A method and Means for Recognition Complex Patterns. US3069654A. US Patent. 1962 December 18;
Ballard D.H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981;13:111–122. doi: 10.1016/0031-3203(81)90009-1. DOI
Smereka M., Dulȩba I. Circular object detection using a modified Hough transform. Int. J. Appl. Math. Comput. Sci. 2008;18:85–91. doi: 10.2478/v10006-008-0008-9. DOI
Khairosfaizal W.M.K.W.M., Nor’aini A.J. Eyes detection in facial images using circular hough transform; Proceedings of the 2009 5th International Colloquium on Signal Processing and Its Applications (CSPA); Kuala Lumpur, Malaysia. 6–8 March 2009.
Mirzaei M., Rafsanjani H.K. An automatic algorithm for determination of the nanoparticles from TEM images using circular hough transform. Micron. 2017;96:86–95. doi: 10.1016/j.micron.2017.02.008. PubMed DOI
Abdelkader M. MATLAB Algorithms. [(accessed on 25 January 2022)]. Available online: https://github.com/MohamedAbdelkader94/Yarn-and-fibers-MATLAB-algorithms.
Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC