Efficacy of Pythium oligandrum on improvement of lucerne yield, root development and disease score under field conditions

. 2022 ; 13 () : 1045225. [epub] 20221206

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36570933

INTRODUCTION: Biological control of root diseases of lucerne (Medicago sativa L.) has potential benefits for stand performance but this remains unsupported by evidence from practical field studies. METHODS: In field experiments at three sites our objectives were to determine the effect of Pythium oligandrum, as spring, autumn and intensive regime treatments on (i) lucerne plant density and root traits development, and (ii) forage yield and forage traits. Lucerne stands were managed under two or three treatments: non-treated control and P. oligandrum applied at two intensities of application under four-cut utilization. RESULTS AND DISCUSSION: Under relatively dry conditions (annual mean 10°C and <500 mm precipitation) lucerne dry matter yield was significantly reduced by 6%, which could be related to mechanisms of inappropriate stimulation and disturbance of the balance between auxins and ethylene. Under annual precipitation of >500 mm, positive impacts on stand height or fine root mass were observed for the autumn and intensive treatments where positive root response was visible only in alluvial soil. However, these changes did not result in higher yield and probably more applications per year will be needed for significant forage yield improvement. This study highlights the limits of field-scale biological control in which the potential of P. oligandrum for lucerne productivity improvement was realised only under a humid environment or deep alluvial soils, where higher root disease infestation may also be expected.

Zobrazit více v PubMed

Öhberg H., Bang U. (2010). Biological control of clover rot on red clover by Coniothyrium minitans under natural and controlled climatic conditions. Biocontrol Sci. Technol. 20 (1), 25–36. doi: 10.1080/09583150903337805 DOI

Abbas A., Mubeen M., Sohail M. A., Solanki M. K., Hussain B., Nosheen S., et al. . (2022). Root rot a silent alfalfa killer in China: Distribution, fungal, and oomycete pathogens, impact of climatic factors and its management. Front. Microbiol. 13, 961794. doi: 10.3389/fmicb.2022.961794 PubMed DOI PMC

Ahemad M., Khan M. S. (2013). Pesticides as antagonists of rhizobia and the legume-rhizobium symbiosis: a paradigmatic and mechanistic outlook. Biochem. Mol. Biol. 1, 63–75. doi: 10.12966/bmb.12.02.2013 DOI

Baker B. P., Green T. A., Loker A. J. (2020). Biological control and integrated pest management in organic and conventional systems. Biol. Control 140, 104095. doi: 10.1016/j.biocontrol.2019.104095 DOI

Baturo-Cieśniewska A., Łukanowski A., Koczwara K., Lenc L. (2018). Development of sclerotinia sclerotiorum (Lib.) de bary on stored carrot treated with pythium oligandrum drechsler determined by qPCR assay. Acta Sci. Pol. Hortorum Cultus 17 (5), 111–121. doi: 10.24326/asphc.2018.5.10 DOI

Bělonožníková K., Vaverová K., Vaněk T., Kolařík M., Hýsková V., Vaňková R., et al. . (2020). Novel insights into the effect of pythium strains on rapeseed metabolism. Microorganisms 8 (10), 1472. doi: 10.3390/microorganisms8101472 PubMed DOI PMC

Benhamou N., Rey P., Picard K., Tirilly Y. (1999). Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology 89 (6), 506–517. PubMed

Benhamou N., leFloch G., Vallance J., Gerbore J., Grizard D., Rey P. (2012). Pythium oligandrum: an example of opportunistic access. Microbiology 158 (11), 2679–2694. doi: 10.1099/mic.0.061457-0 PubMed DOI

Berendsen R. L., Pieterse C. M., Bakker P. A. (2012). The rhizosphere microbiome and plant health. Trends Plant Sci. 17 (8), 478–486. doi: 10.1016/j.tplants.2012.04.001 PubMed DOI

Binyamin R., Nadeem S. M., Akhtar S., Khan M. Y., Anjum R. (2019). Beneficial and pathogenic plant-microbe interactions: A review. Soil Environ. 38 (2), 11–33. doi: 10.25252/SE/19/71659 DOI

Boček S., Salaš P., Sasková H., Mokričková J. (2012). Effect of alginure (seaweed extract), myco-sin VIN (sulfuric clay) and polyversum (Pythium oligandrum drechs.) on yield and disease control in organic strawberries. Acta Univ. Agric. Silviculturae Mendelianae Brunensis 8, 19–28. doi: 10.11118/actaun201260080019 DOI

Campbell R. (1994). Biological control of soil-borne diseases: some present problems and different approaches. Crop Prot. 13 (1), 4–13. doi: 10.1016/0261-2194(94)90129-5 DOI

Dubois M., Van den Broeck L., Inzé D. (2018). The pivotal role of ethylene in plant growth. Trends Plant Sci. 23 (4), 311–323. doi: 10.1016/j.tplants.2018.01.003 PubMed DOI PMC

Georgieva N., Nikolova I., Delchev G. (2020). Response of spring vetch (Vicia sativa l.) to organic production conditions. Bulg. J. Agric. Sci. 26 (3), 520–526.

Gerbore J., Benhamou N., Vallance J., leFloch G., Grizard D., Regnault-Roger C., et al. . (2014). Biological control of plant pathogens: Advantages and limitations seen through the case study of Pythium oligandrum . Environ. Sci. pollut. Res. 21 (7), 4847–4860. doi: 10.1007/s11356-013-1807-6 PubMed DOI

Ghorbanpour M., Omidvari M., Abbaszadeh-Dahaji P., Omidvar R., Kariman K. (2018). Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol. Control 117, 147–157. doi: 10.1016/j.biocontrol.2017.11.006 DOI

Gray F. A., Koch D. W. (2004). Influence of late season harvesting, fall grazing, and fungicide treatment on verticillium wilt incidence, plant density, and forage yield of alfalfa. Plant Dis. 88 (8), 811–816. doi: 10.1094/PDIS.2004.88.8.811 PubMed DOI

Gupta R., Anand G., Gaur R., Yadav D. (2021). Plant–microbiome interactions for sustainable agriculture: a review. Physiol. Mol. Biol. Plants 27 (1), 165–179. doi: 10.1007/s12298-021-00927-1 PubMed DOI PMC

Haegi A., Catalano V., Luongo L., Vitale S., Scotton M., Ficcadenti N., et al. . (2013). A newly developed real-time PCR assay for detection and quantification of fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes. Phytopathology 103 (8), 802–810. doi: 10.1094/PHYTO-11-12-0293-R PubMed DOI

Hakl J., Hrevušová Z., Hejcman M., Fuksa P. (2012). The use of a rising plate meter to evaluate lucerne (Medicago sativa l.) height as an important agronomic trait enabling yield estimation. Grass Forage Sci. 67 (4), 589–596. doi: 10.1111/j.1365-2494.2012.00886.x DOI

Hakl J., Pisarčik M., Fuksa P., Šantrůček J. (2021). Potential of lucerne sowing rate to influence root development and its implications for field stand productivity. Grass Forage Sci. 76 (3), 378–389. doi: 10.1111/gfs.12546 DOI

Hakl J., Pisarčik M., Hrevušová Z., Šantrůček J. (2017). In-field lucerne root morphology traits over time in relation to forage yield, plant density, and root disease under two cutting managements. Field Crops Res. 213, 109–117. doi: 10.1016/j.fcr.2017.07.017 DOI

Handelsman J., Raffel S., Mester E. H., Wunderlich L., Grau C. R. (1990). Biological control of damping-off of alfalfa seedlings with bacillus cereus UW85. Appl. Environ. Microbiol. 56 (3), 713–718. doi: 10.1128/aem.56.3.713-718.1990 PubMed DOI PMC

Hwang S. F., Gossen B. D., Turnbull G. D., Chang K. F., Howard R. J. (2002). Seedbed preparation, timing of seeding, fertility and root pathogens affect establishment and yield of alfalfa. Can. J. Plant Sci. 82 (2), 371–381. doi: 10.4141/P01-121 DOI

Jenkyn J. F. (1975). The effect of benomyl sprays on sclerotinia trifoliorum and yield of red clover. Ann. Appl. Biol. 81 (3), 419–423. doi: 10.1111/j.1744-7348.1975.tb01660.x DOI

Jones C. R., Samac D. A. (1996). Biological control of fungi causing alfalfa seedling damping off with a disease-suppressive strain of streptomyces. Biol. Control 7 (2), 196–204. doi: 10.1006/bcon.1996.0084 DOI

Korver R. A., Koevoets I. T., Testerink C. (2018). Out of shape during stress: a key role for auxin. Trends Plant Sci. 23 (9), 783–793. doi: 10.1016/j.tplants.2018.05.011 PubMed DOI PMC

Lamb J. F. S., Barnes D. K., Henjum K. I. (1999). Gain from two cycles of divergent selection for root morphology in alfalfa. Crop Sci. 39 (4), 1026–1035. doi: 10.2135/cropsci1999.0011183X003900040011x DOI

Lamb J. F. S., Samac N. A., Barnes D. K., Henjum K. I. (2000). Increased herbage yield in alfalfa associated with selection fibrous and lateral roots. Crop Sci. 40 (3), 693–699. doi: 10.2135/cropsci2000.403693x DOI

Larkin R. P., English J. T., Mihail J. D. (1995). Effects of infection by pythium spp. on root system morphology of alfalfa seedlings. Phytopathology 85 (4), 430–435. doi: 10.1094/Phyto-85-430 DOI

Larkin R. R., English J. T., Mihail J. D. (1996). The relationship of infection by pythium spp. to root system morphology of alfalfa seedlings in the field. Plant Dis. 80, 281–285. doi: 10.1094/PD-80-0281 DOI

Leath K. T., Zeiders K. E., Byers R. A. (1973). Increased yield and persistence of red clover after a soil drench application of benomyl 1. Agron. J. 65 (6), 1008–1010. doi: 10.2134/agronj1973.00021962006500060052x DOI

Le Floch G., Rey P., Benizri E., Benhamou N., Tirilly Y. (2003). Impact of auxin-compounds produced by the antagonistic fungus Pythium oligandrum or the minor pathogen pythium group f on plant growth. Plant Soil 257 (2), 459–470. doi: 10.1023/A:1027330024834 DOI

Liu L., Guo G., Wang Z., Ji H., Mu F., Li X. (2014). “Auxin in plant growth and stress responses,” in Phytohormones: A window to metabolism, signaling and biotechnological applications. (New York, NY: Springer; ). 1–35.

Luo Y., Meyerhoff P. A., Loomis R. S. (1995). Seasonal patterns and vertical distributions of fine roots of alfalfa (Medicago sativa l.). Field Crops Res. 40 (2), 119–127. doi: 10.1016/0378-4290(94)00090-Y DOI

Maurer K. A., Radišek S., Berg G., Seefelder S. (2013). Real-time PCR assay to detect verticillium albo-atrum and v. dahliae in hops: development and comparison with a standard PCR method. J. Plant Dis. Prot. 120 (3), 105–114. doi: 10.1007/BF03356461 DOI

McGehee C. S., Raudales R. E., Elmer W. H., McAvoy R. J. (2019). Efficacy of biofungicides against root rot and damping-off of microgreens caused by pythium spp. Crop Prot. 121, 96–102. doi: 10.1016/j.cropro.2018.12.007 DOI

McKenna P., Cannon N., Conway J. (2018). Soil mineral nitrogen availability predicted by herbage yield and disease resistance in red clover (Trifolium pratense) cropping. Nutr. Cycl. Agroecosys. 112 (3), 303–315. doi: 10.1007/s10705-018-9947-1 DOI

Miller-Garvin J. E., Viands D. R. (1994). Selection for resistance to fusarium root rot, and associations among resistances to six diseases in alfalfa. Crop Sci. 34 (6), 1461–1465. doi: 10.2135/cropsci1994.0011183X003400060008x DOI

Morsy K. M., Abdel-Monaim M. F., Mazen M. M. (2011). Use of abiotic and biotic inducers for controlling fungal diseases and improving growth of alfalfa. World J. Agric. Sci. 7 (5), 566–576.

Nan Z. B., Skipp R. A., Long P. G. (1991). Use of fungicides to assess the effects of root disease: effects of prochloraz on red clover and microbial populations in soil and roots. Soil Biol. Biochem. 23 (8), 743–750. doi: 10.1016/0038-0717(91)90144-9 DOI

Nikolova I., Georgieva N., Naydenova Y. (2015). Forage quality in Pisum sativum, treated by biological and synthetic active compounds. Plant Sci. 52 (5), 94–98.

O’Brien P. A. (2017). Biological control of plant diseases. Australas. Plant Pathol. 46 (4), 293–304. doi: 10.1007/s13313-017-0481-4 DOI

Ouhaibi-Ben A. N., Vallance J., Gerbore J., Yacoub A., Daami-Remadi M., Rey P. (2021). Combining potential oomycete and bacterial biocontrol agents as a tool to fight tomato rhizoctonia root rot. Biol. Control 155, 104521. doi: 10.1016/j.biocontrol.2020.104521 DOI

Pharand B., Carisse O., Benhamou N. (2002). Cytological aspects of compost-mediated induced resistance against fusarium crown and root rot in tomato. Phytopathology 92 (4), 424–438. doi: 10.1094/PHYTO.2002.92.4.424 PubMed DOI

Pisarčik M., Hakl J., Hrevušová Z. (2020). Effect of Pythium oligandrum and poly-beta-hydroxy butyric acid application on root growth, forage yield and root diseases of red clover under field conditions. Crop Prot. 127, 104968. doi: 10.1016/j.cropro.2019.104968 DOI

Pisarčik M., Hakl J., Menšík L., Szábo O., Nerušil P. (2019). Biological control in lucerne crops can negatively affect the development of root morphology, forage yield and quality. Plant Soil Environ. 65 (10), 477–482. doi: 10.17221/398/2019-PSE DOI

Pisarčik M., Hakl J., Szabó O., Hrevušová Z. (2021). Efficacy of variable timing of pythium oligandrum applications on red clover grown under field conditions. Crop Prot. 149, 105780. doi: 10.1016/j.cropro.2021.105780 DOI

Riday H. (2010). Progress made in improving red clover (Trifolium pratense l.) through breeding. Int. J. Plant Breed. 4 (1), 22–29.

Sedman J. N., Bastian C. T., Held L. J., Gray F. A., Koch D. W. (2007). An economic analysis of alfalfa harvest methods when infested with verticillium wilt. Agron. J. 99 (6), 1635–1639. doi: 10.2134/agronj2007.0010 DOI

StatSoft, Inc (2012). Statistica for windows (Tulsa, USA: StatSoft; ).

Waalwijk C., Heide R. V. D., Vries I. D., Lee T. V. D., Schoen C., Corainville G. C. D., et al. . (2004). “Quantitative detection of fusarium species in wheat using TaqMan,” in Molecular diversity and PCR-detection of toxigenic fusarium species and ochratoxigenic fungi (Dordrecht: Springer; ), 481–494.

Xiao K., Kinkel L. L., Samac D. A. (2002). Biological control of phytophthora root rots on alfalfa and soybean with streptomyces. Biol. Control 23 (3), 285–295. doi: 10.1006/bcon.2001.1015 DOI

Yang C., Hamel C., Vujanovic V., Gan Y. (2011). Fungicide: modes of action and possible impact on nontarget microorganisms. Int. Sch. Res. Not. 2011, 1–8. doi: 10.5402/2011/130289 DOI

You X., Barraud J., Tojo M. (2019). Suppressive effects of Pythium oligandrum on soybean damping off caused by P. aphanidermatum and P. myriotylum . Annu. Rep. Kansai Plant Prot. Soc. 61, 9–13. doi: 10.4165/kapps.61.9 DOI

Zhang Q., Li J., Zhang W., Yan S., Wang R., Zhao J., et al. . (2012). The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. Plant J. 72 (5), 805–816. doi: 10.1111/j.1365-313X.2012.05121.x PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...