Long-Read Genome Sequence of the Sugar Beet Rhizosphere Mycoparasite Pythium oligandrum

. 2020 Feb 06 ; 10 (2) : 431-436. [epub] 20200206

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31792008

Pythium oligandrum is a soil born free living oomycete able to parasitize fungi and oomycetes prey, including important plant and animals pathogens. Pythium oligandrum can colonize endophytically the root tissues of diverse plants where it induces plant defenses. Here we report the first long-read genome sequencing of a P. oligandrum strain sequenced by PacBio technology. Sequencing of genomic DNA loaded onto six SMRT cells permitted the acquisition of 913,728 total reads resulting in 112X genome coverage. The assembly and polishing of the genome sequence yielded180 contigs (N50 = 1.3 Mb; L50 = 12). The size of the genome assembly is 41.9 Mb with a longest contig of 2.7 Mb and 15,007 predicted protein-coding genes among which 95.25% were supported by RNAseq data, thus constituting a new Pythium genome reference. This data will facilitate genomic comparisons of Pythium species that are commensal, beneficial or pathogenic on plant, or parasitic on fungi and oomycete to identify key genetic determinants underpinning their diverse lifestyles. In addition comparison with plant pathogenic or zoopathogenic species will illuminate genomic adaptations for pathogenesis toward widely diverse hosts.

Zobrazit více v PubMed

Almagro Armenteros J. J., Tsirigos K. D., Sonderby C. K., Petersen T. N., Winther O. et al. , 2019.  SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37: 420–423. 10.1038/s41587-019-0036-z PubMed DOI

Amaro T. M., Thilliez G. J., Motion G. B., and Huitema E., 2017.  A Perspective on CRN Proteins in the Genomics Age: Evolution, Classification, Delivery and Function Revisited. Front. Plant Sci. 8: 99 10.3389/fpls.2017.00099 PubMed DOI PMC

Benhamou N., le Floch G., Vallance J., Gerbore J., Grizard D. et al. , 2012.  Pythium oligandrum: an example of opportunistic success. Microbiology 158: 2679–2694. 10.1099/mic.0.061457-0 PubMed DOI

Berger H., Yacoub A., Gerbore J., Grizard D., Rey P. et al. , 2016.  Draft Genome Sequence of Biocontrol Agent Pythium oligandrum Strain Po37, an Oomycota. Genome Announc. 4: e00215–e00216. 10.1128/genomeA.00215-16 PubMed DOI PMC

Cantarel B. L., Coutinho P. M., Rancurel C., Bernard T., Lombard V. et al. , 2009.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37: D233–D238. 10.1093/nar/gkn663 PubMed DOI PMC

Gaastra W., Lipman L. J., De Cock A. W., Exel T. K., Pegge R. B. et al. , 2010.  Pythium insidiosum: an overview. Vet. Microbiol. 146: 1–16. 10.1016/j.vetmic.2010.07.019 PubMed DOI

Gaulin E., Pel M. J. C., Camborde L., San-Clemente H., Courbier S. et al. , 2018.  Genomics analysis of Aphanomyces spp. identifies a new class of oomycete effector associated with host adaptation. BMC Biol. 16: 43 10.1186/s12915-018-0508-5 PubMed DOI PMC

Haas B. J., Kamoun S., Zody M. C., Jiang R. H. Y., Handsaker R. E. et al. , 2009.  Genome sequence and analysis of the Irish potato famine pathogen. Nature 461: 393–398. 10.1038/nature08358 PubMed DOI

Kushwaha S. K., Vetukuri R. R., and Grenville-Briggs L. J., 2017.  Draft Genome Sequence of the Mycoparasitic Oomycete Pythium oligandrum Strain CBS 530.74. Genome Announc. 5: e00346-17. 10.1128/genomeA.00346-17 PubMed DOI PMC

Le Floch G., Benhamou N., Mamaca E., Salerno M. I., Tirilly Y. et al. , 2005.  Characterisation of the early events in atypical tomato root colonisation by a biocontrol agent, Pythium oligandrum. Plant Physiol. Biochem. 43: 1–11. 10.1016/j.plaphy.2004.10.005 PubMed DOI

Li J., Yang F., Zhu J., He S., and Li L., 2009.  Characterization of a tandemly repeated subtelomeric sequence with inverted telomere repeats in maize. Genome 52: 286–293. 10.1139/G09-005 PubMed DOI

Martin F. N., and Loper J. E., 1999.  Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Crit. Rev. Plant Sci. 18: 111–181. 10.1080/07352689991309216 DOI

Muraki K., Nyhan K., Han L., and Murnane J. P., 2012.  Mechanisms of telomere loss and their consequences for chromosome instability. Front. Oncol. 2: 135 10.3389/fonc.2012.00135 PubMed DOI PMC

Ribeiro W. R., and Butler E., 1995.  Comparison of the mycoparasites Pythium periplocum, P. acanthicum and P. oligandrum. Mycol. Res. 99: 963–968. 10.1016/S0953-7562(09)80757-0 DOI

Shen D., Tang Z., Wang C., Wang J., Dong Y. et al. , 2019.  Infection mechanisms and putative effector repertoire of the mosquito pathogenic oomycete Pythium guiyangense uncovered by genomic analysis. PLoS Genet. 15: e1008116 10.1371/journal.pgen.1008116 PubMed DOI PMC

Simão F. A., Waterhouse R. M., Ioannidis P., Kriventseva E. V., and Zdobnov E. M., 2015.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210–3212. 10.1093/bioinformatics/btv351 PubMed DOI

Stanke, M., and B. Morgenstern, 2005 AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33 (Web Server issue):W465–467. 10.1093/nar/gki458 PubMed DOI PMC

Supek F., Bosnjak M., Skunca N., and Smuc T., 2011.  REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6: e21800 10.1371/journal.pone.0021800 PubMed DOI PMC

Thines M., 2018.  Oomycetes. Curr. Biol. 28: R812–R813. 10.1016/j.cub.2018.05.062 PubMed DOI

Uzuhashi S., Kakishima M., and Tojo M., 2010.  Phylogeny of the genus Pythium and description of new genera. Mycoscience 51: 337–365. 10.1007/S10267-010-0046-7 DOI

Veselý D., 1977.  Potential biological control of damping-off pathogens in emerging sugar beet by Pythium oligandrum Drechsler. Phytopathologische Zeitschrift 90: 113–115. 10.1111/j.1439-0434.1977.tb03225.x DOI

Zerillo M. M., Adhikari B. N., Hamilton J. P., Buell C. R., Lévesque C. A. et al. , 2013.  Carbohydrate-active enzymes in Pythium and their role in plant cell wall and storage polysaccharide degradation. PLoS One 8: e72572 10.1371/journal.pone.0072572 PubMed DOI PMC

Zhang H., Yohe T., Huang L., Entwistle S., Wu P. et al. , 2018.  dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46: W95–W101. 10.1093/nar/gky418 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Novel Insights into the Effect of Pythium Strains on Rapeseed Metabolism

. 2020 Sep 25 ; 8 (10) : . [epub] 20200925

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace