Chromosome Painting Using Chromosome-Specific BAC Clones
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- Arabidopsis thaliana, BAC FISH, Brassicaceae, Chromosome painting, Fluorescence in situ hybridization (FISH), Nick translation,
- MeSH
- Arabidopsis * genetika MeSH
- Brassicaceae * genetika MeSH
- buněčné klony MeSH
- chromozomy MeSH
- DNA sondy MeSH
- DNA MeSH
- hybridizace in situ fluorescenční metody MeSH
- malování chromozomů metody MeSH
- umělé bakteriální chromozomy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA sondy MeSH
- DNA MeSH
Chromosome painting (CP) refers to visualization of large chromosome regions, chromosome arms or entire chromosomes via fluorescence in situ hybridization (FISH) of chromosome-specific DNA sequences. For CP in crucifers (Brassicaceae), typically contigs of chromosome-specific bacterial artificial chromosomes (BAC) from Arabidopsis thaliana are applied as painting probes on chromosomes of A. thaliana or other species (comparative chromosome painting, CCP). CP/CCP enables to identify and trace particular chromosome regions and/or chromosomes throughout all mitotic and meiotic stages as well as corresponding interphase chromosome territories. However, extended pachytene chromosomes provide the highest resolution of CP/CCP. Fine-scale chromosome structure, structural chromosome rearrangements (such as inversions, translocations, centromere repositioning), and chromosome breakpoints can be investigated by CP/CCP. BAC DNA probes can be accompanied by other types of DNA probes, such as repetitive DNA, genomic DNA, or synthetic oligonucleotide probes. Here, we describe a robust step-by-step protocol of CP and CCP which proved to be efficient across the family Brassicaceae, but which is also applicable to other angiosperm families.
Zobrazit více v PubMed
Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697 PubMed DOI
Lysak M, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A 103:5224–5229 PubMed DOI PMC
Mandáková T, Thorbjörnsson H, Pisupati R, Reichardt-Gomez I, Lysak MA, Anamthawat-Jónsson K (2017) Icelandic accession of Arabidopsis thaliana confirmed with cytogenetic markers and its origin inferred from whole genome sequencing. Icel Agric Sci 30:29–38 DOI
Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570 PubMed DOI PMC
Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA (2010) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277–2290
Mandáková T, Hloušková P, Koch MA, Lysak MA (2020) Genome evolution in Arabideae was marked by frequent centromere repositioning. Plant Cell 32:650–665 PubMed DOI PMC
Mandáková T, Lysak MA (2016) Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. Curr Protoc Plant Biol 1:359–371 PubMed DOI
Mandáková T, Lysak MA (2016) Chromosome preparation for cytogenetic analyses in Arabidopsis. Curr Protoc Plant Biol 1:1–9
Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
Henegariu O, Bray-Ward P, Ward DC (2000) Custom fluorescent nucleotide synthesis as an alternative method for nucleic acid labeling. Nat Biotechnol 18:345–348 PubMed DOI
Meinkoth J, Wahl G (1984) Hybridization of nucleic acid immobilized on solid support. Anal Biochem 138:267–284 PubMed DOI
Naish M, Alonge M, Wlodzimierz P, Tock AJ, Abramson BW, Schmücker A et al (2021) The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 374:eabi7489 PubMed DOI PMC