The genetic and epigenetic landscape of the Arabidopsis centromeres
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
P 30802
Austrian Science Fund FWF - Austria
P 32054
Austrian Science Fund FWF - Austria
BB/N007557/1
Biotechnology and Biological Sciences Research Council - United Kingdom
P30 CA045508
NCI NIH HHS - United States
S10 OD028632
NIH HHS - United States
TAI 304
Austrian Science Fund FWF - Austria
R01 GM067014
NIGMS NIH HHS - United States
P 26887
Austrian Science Fund FWF - Austria
P 28320
Austrian Science Fund FWF - Austria
PubMed
34762468
PubMed Central
PMC10164409
DOI
10.1126/science.abi7489
Knihovny.cz E-resources
- MeSH
- Arabidopsis genetics ultrastructure MeSH
- Centromere chemistry genetics MeSH
- Chromosomes, Plant genetics MeSH
- Epigenesis, Genetic * MeSH
- Genome, Plant MeSH
- Histones analysis MeSH
- Meiosis MeSH
- DNA Methylation MeSH
- Evolution, Molecular MeSH
- Recombination, Genetic MeSH
- Retroelements MeSH
- DNA, Satellite MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Histones MeSH
- Retroelements MeSH
- DNA, Satellite MeSH
Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show the least amount of divergence and occur in higher-order repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DNA double-strand breaks occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving through cycles of satellite homogenization and retrotransposon-driven diversification.
Central European Institute of Technology Masaryk University Kamenice 5 Brno 625 00 Czech Republic
Department of Biological Sciences University of Tokyo Tokyo Japan
Department of Computer Science Johns Hopkins University Baltimore MD USA
Department of Plant Sciences Downing Street University of Cambridge Cambridge CB2 3EA UK
Faculty of Biology LMU Munich Großhaderner Str 2 82152 Planegg Martinsried Germany
Gregor Mendel Institute Dr Bohr Gasse 3 1030 Vienna Austria
Howard Hughes Medical Institute Cold Spring Harbor Laboratory Cold Spring Harbor NY USA
School of Life Sciences University of Sussex Brighton BN1 9RH UK
See more in PubMed
Malik HS, Henikoff S, Major evolutionary transitions in centromere complexity. Cell 138, 1067–1082 (2009). doi: 10.1016/j.cell.2009.08.036; PubMed DOI
Melters DP et al., Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 14, R10 (2013).doi: 10.1186/gb-2013-14-1-r10; PubMed DOI PMC
McKinley KL, Cheeseman IM, The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol 17, 16–29 (2016). doi: 10.1038/nrm.2015.5; PubMed DOI PMC
Rudd MK, Wray GA, Willard HF, The evolutionary dynamics of α-satellite. Genome Res. 16, 88–96 (2006). doi: 10.1101/gr.3810906; PubMed DOI PMC
Jain M et al., Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol 36, 338–345 (2018). doi: 10.1038/nbt.4060; PubMed DOI PMC
Miga KH et al., Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79–84 (2020). doi: 10.1038/s41586-020-2547-7; PubMed DOI PMC
Logsdon GA et al., The structure, function and evolution of a complete human chromosome 8. Nature 593, 101–107 (2021). doi: 10.1038/s41586-021-03420-7; PubMed DOI PMC
Nurk S et al., The complete sequence of a human genome. bioRxiv 2021.05.26.445798 [Preprint] (2021). doi: 10.1101/2021.05.26.445798 DOI
Arabidopsis Genome Initiative, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000). doi: 10.1038/35048692; PubMed DOI
Maheshwari S, Ishii T, Brown CT, Houben A, Comai L, Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence. Genome Res. 27, 471–478 (2017). doi: 10.1101/gr.214619.116; PubMed DOI PMC
Copenhaver GP et al., Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468–2474 (1999). doi: 10.1126/science.286.5449.2468; PubMed DOI
Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S, Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14, 1053–1066 (2002). doi: 10.1105/tpc.010425; PubMed DOI PMC
Martinez-Zapater JM, Estelle MA, Somerville CR, A highly repeated DNA sequence in Arabidopsis thaliana. Mol. Gen. Genet 204, 417–423 (1986). doi: 10.1007/BF00331018 DOI
Round EK, Flowers SK, Richards EJ, Arabidopsis thaliana centromere regions: Genetic map positions and repetitive DNA structure. Genome Res. 7, 1045–1053 (1997). doi: 10.1101/gr.7.11.1045; PubMed DOI
McCartney AM et al., Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies. bioRxiv 2021.07.02.450803 [Preprint] (2021). doi: 10.1101/2021.07.02.450803 PubMed DOI PMC
Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H, Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res. 9, 117–121 (2002). doi: 10.1093/dnares/9.4.117; PubMed DOI
Rhie A, Walenz BP, Koren S, Phillippy AM, Merqury: Reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020). doi: 10.1186/s13059-020-02134-9; PubMed DOI PMC
Wright DA, Voytas DF, Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res. 12, 122–131 (2002). doi: 10.1101/gr.196001; PubMed DOI PMC
McAllister BF, Werren JH, Evolution of tandemly repeated sequences: What happens at the end of an array? J. Mol. Evol 48, 469–481 (1999). doi: 10.1007/PL00006491; PubMed DOI
Ni P et al., Genome-wide detection of cytosine methylations in plant from nanopore sequencing data using deep learning. bioRxiv 2021.02.07.430077 [Preprint] (2021). doi: 10.1101/2021.02.07.430077 PubMed DOI PMC
Stroud H et al., Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol 21, 64–72 (2014). doi: 10.1038/nsmb.2735; PubMed DOI PMC
Stroud H, Greenberg MVC, Feng S, Bernatavichute YV, Jacobsen SE, Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013). doi: 10.1016/j.cell.2012.10.054; PubMed DOI PMC
Jacob Y et al., ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat. Struct. Mol. Biol 16, 763–768 (2009). doi: 10.1038/nsmb.1611; PubMed DOI PMC
Yelagandula R et al., The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 158, 98–109 (2014). doi: 10.1016/j.cell.2014.06.006; PubMed DOI PMC
Shi J et al., Widespread gene conversion in centromere cores. PLOS Biol. 8, e1000327 (2010). doi: 10.1371/journal.pbio.1000327; PubMed DOI PMC
Lambing C et al., Interacting genomic landscapes of REC8-cohesin, chromatin, and meiotic recombination in Arabidopsis. Plant Cell 32, 1218–1239 (2020). doi: 10.1105/tpc.19.00866; PubMed DOI PMC
Lambing C, Kuo PC, Tock AJ, Topp SD, Henderson IR, ASY1 acts as a dosage-dependent antagonist of telomere-led recombination and mediates crossover interference in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A 117, 13647–13658 (2020). doi: 10.1073/pnas.1921055117; PubMed DOI PMC
Choi K et al., Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory regions. Genome Res. 28, 532–546 (2018). doi: 10.1101/gr.225599.117; PubMed DOI PMC
Rigal M et al., Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids. Proc. Natl. Acad. Sci. U.S.A 113, E2083–E2092 (2016). doi: 10.1073/pnas.1600672113; PubMed DOI PMC
Steimer A et al., Endogenous targets of transcriptional gene silencing in Arabidopsis. Plant Cell 12, 1165–1178 (2000). doi: 10.1105/tpc.12.7.1165; PubMed DOI PMC
Lee SC et al., Arabidopsis retrotransposon virus-like particles and their regulation by epigenetically activated small RNA. Genome Res. 30, 576–588 (2020). doi: 10.1101/gr.259044.119; PubMed DOI PMC
Rhie A et al., Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021). doi: 10.1038/s41586-021-03451-0; PubMed DOI PMC
Wijnker E et al., The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. eLife 2, e01426 (2013). doi: 10.7554/eLife.01426; PubMed DOI PMC
Durfy SJ, Willard HF, Patterns of intra- and interarray sequence variation in alpha satellite from the human X chromosome: Evidence for short-range homogenization of tandemly repeated DNA sequences. Genomics 5, 810–821 (1989). doi: 10.1016/0888-7543(89)90123-7; PubMed DOI
Altemose N et al., Complete genomic and epigenetic maps of human centromeres. bioRxiv 2021.07.12.452052 [Preprint] (2021). doi: 10.1101/2021.07.12.452052 PubMed DOI PMC
Mahtani MM, Willard HF, Physical and genetic mapping of the human X chromosome centromere: Repression of recombination. Genome Res. 8, 100–110 (1998). doi: 10.1101/gr.8.2.100; PubMed DOI
Tsukahara S et al., Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev. 26, 705–713 (2012). doi: 10.1101/gad.183871.111; PubMed DOI PMC
Kawabe A, Nasuda S, Structure and genomic organization of centromeric repeats in Arabidopsis species. Mol. Genet. Genomics 272, 593–602 (2005). doi: 10.1007/s00438-004-1081-x; PubMed DOI
Klein SJ, O’Neill RJ, Transposable elements: Genome innovation, chromosome diversity, and centromere conflict. Chromosome Res. 26, 5–23 (2018). doi: 10.1007/s10577-017-9569-5; PubMed DOI PMC
Malik HS, The centromere-drive hypothesis: A simple basis for centromere complexity. Prog. Mol. Subcell. Biol 48, 33–52 (2009). doi: 10.1007/978-3-642-00182-6_2; PubMed DOI
Haig D, Grafen A, Genetic scrambling as a defence against meiotic drive. J. Theor. Biol 153, 531–558 (1991). doi: 10.1016/S0022-5193(05)80155-9; PubMed DOI
Bimodal centromeres in pentaploid dogroses shed light on their unique meiosis
Chromosome-level baobab genome illuminates its evolutionary trajectory and environmental adaptation
Chromosome Painting Using Chromosome-Specific BAC Clones
Holocentromeres can consist of merely a few megabase-sized satellite arrays
Cycles of satellite and transposon evolution in Arabidopsis centromeres
Satellite DNAs and human sex chromosome variation