• This record comes from PubMed

The genetic and epigenetic landscape of the Arabidopsis centromeres

. 2021 Nov 12 ; 374 (6569) : eabi7489. [epub] 20211112

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
P 30802 Austrian Science Fund FWF - Austria
P 32054 Austrian Science Fund FWF - Austria
BB/N007557/1 Biotechnology and Biological Sciences Research Council - United Kingdom
P30 CA045508 NCI NIH HHS - United States
S10 OD028632 NIH HHS - United States
TAI 304 Austrian Science Fund FWF - Austria
R01 GM067014 NIGMS NIH HHS - United States
P 26887 Austrian Science Fund FWF - Austria
P 28320 Austrian Science Fund FWF - Austria

Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show the least amount of divergence and occur in higher-order repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DNA double-strand breaks occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving through cycles of satellite homogenization and retrotransposon-driven diversification.

Comment In

PubMed

See more in PubMed

Malik HS, Henikoff S, Major evolutionary transitions in centromere complexity. Cell 138, 1067–1082 (2009). doi: 10.1016/j.cell.2009.08.036; PubMed DOI

Melters DP et al., Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 14, R10 (2013).doi: 10.1186/gb-2013-14-1-r10; PubMed DOI PMC

McKinley KL, Cheeseman IM, The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol 17, 16–29 (2016). doi: 10.1038/nrm.2015.5; PubMed DOI PMC

Rudd MK, Wray GA, Willard HF, The evolutionary dynamics of α-satellite. Genome Res. 16, 88–96 (2006). doi: 10.1101/gr.3810906; PubMed DOI PMC

Jain M et al., Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol 36, 338–345 (2018). doi: 10.1038/nbt.4060; PubMed DOI PMC

Miga KH et al., Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79–84 (2020). doi: 10.1038/s41586-020-2547-7; PubMed DOI PMC

Logsdon GA et al., The structure, function and evolution of a complete human chromosome 8. Nature 593, 101–107 (2021). doi: 10.1038/s41586-021-03420-7; PubMed DOI PMC

Nurk S et al., The complete sequence of a human genome. bioRxiv 2021.05.26.445798 [Preprint] (2021). doi: 10.1101/2021.05.26.445798 DOI

Arabidopsis Genome Initiative, Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000). doi: 10.1038/35048692; PubMed DOI

Maheshwari S, Ishii T, Brown CT, Houben A, Comai L, Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence. Genome Res. 27, 471–478 (2017). doi: 10.1101/gr.214619.116; PubMed DOI PMC

Copenhaver GP et al., Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468–2474 (1999). doi: 10.1126/science.286.5449.2468; PubMed DOI

Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S, Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14, 1053–1066 (2002). doi: 10.1105/tpc.010425; PubMed DOI PMC

Martinez-Zapater JM, Estelle MA, Somerville CR, A highly repeated DNA sequence in Arabidopsis thaliana. Mol. Gen. Genet 204, 417–423 (1986). doi: 10.1007/BF00331018 DOI

Round EK, Flowers SK, Richards EJ, Arabidopsis thaliana centromere regions: Genetic map positions and repetitive DNA structure. Genome Res. 7, 1045–1053 (1997). doi: 10.1101/gr.7.11.1045; PubMed DOI

McCartney AM et al., Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies. bioRxiv 2021.07.02.450803 [Preprint] (2021). doi: 10.1101/2021.07.02.450803 PubMed DOI PMC

Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H, Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res. 9, 117–121 (2002). doi: 10.1093/dnares/9.4.117; PubMed DOI

Rhie A, Walenz BP, Koren S, Phillippy AM, Merqury: Reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020). doi: 10.1186/s13059-020-02134-9; PubMed DOI PMC

Wright DA, Voytas DF, Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res. 12, 122–131 (2002). doi: 10.1101/gr.196001; PubMed DOI PMC

McAllister BF, Werren JH, Evolution of tandemly repeated sequences: What happens at the end of an array? J. Mol. Evol 48, 469–481 (1999). doi: 10.1007/PL00006491; PubMed DOI

Ni P et al., Genome-wide detection of cytosine methylations in plant from nanopore sequencing data using deep learning. bioRxiv 2021.02.07.430077 [Preprint] (2021). doi: 10.1101/2021.02.07.430077 PubMed DOI PMC

Stroud H et al., Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol 21, 64–72 (2014). doi: 10.1038/nsmb.2735; PubMed DOI PMC

Stroud H, Greenberg MVC, Feng S, Bernatavichute YV, Jacobsen SE, Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013). doi: 10.1016/j.cell.2012.10.054; PubMed DOI PMC

Jacob Y et al., ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat. Struct. Mol. Biol 16, 763–768 (2009). doi: 10.1038/nsmb.1611; PubMed DOI PMC

Yelagandula R et al., The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 158, 98–109 (2014). doi: 10.1016/j.cell.2014.06.006; PubMed DOI PMC

Shi J et al., Widespread gene conversion in centromere cores. PLOS Biol. 8, e1000327 (2010). doi: 10.1371/journal.pbio.1000327; PubMed DOI PMC

Lambing C et al., Interacting genomic landscapes of REC8-cohesin, chromatin, and meiotic recombination in Arabidopsis. Plant Cell 32, 1218–1239 (2020). doi: 10.1105/tpc.19.00866; PubMed DOI PMC

Lambing C, Kuo PC, Tock AJ, Topp SD, Henderson IR, ASY1 acts as a dosage-dependent antagonist of telomere-led recombination and mediates crossover interference in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A 117, 13647–13658 (2020). doi: 10.1073/pnas.1921055117; PubMed DOI PMC

Choi K et al., Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory regions. Genome Res. 28, 532–546 (2018). doi: 10.1101/gr.225599.117; PubMed DOI PMC

Rigal M et al., Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids. Proc. Natl. Acad. Sci. U.S.A 113, E2083–E2092 (2016). doi: 10.1073/pnas.1600672113; PubMed DOI PMC

Steimer A et al., Endogenous targets of transcriptional gene silencing in Arabidopsis. Plant Cell 12, 1165–1178 (2000). doi: 10.1105/tpc.12.7.1165; PubMed DOI PMC

Lee SC et al., Arabidopsis retrotransposon virus-like particles and their regulation by epigenetically activated small RNA. Genome Res. 30, 576–588 (2020). doi: 10.1101/gr.259044.119; PubMed DOI PMC

Rhie A et al., Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021). doi: 10.1038/s41586-021-03451-0; PubMed DOI PMC

Wijnker E et al., The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana. eLife 2, e01426 (2013). doi: 10.7554/eLife.01426; PubMed DOI PMC

Durfy SJ, Willard HF, Patterns of intra- and interarray sequence variation in alpha satellite from the human X chromosome: Evidence for short-range homogenization of tandemly repeated DNA sequences. Genomics 5, 810–821 (1989). doi: 10.1016/0888-7543(89)90123-7; PubMed DOI

Altemose N et al., Complete genomic and epigenetic maps of human centromeres. bioRxiv 2021.07.12.452052 [Preprint] (2021). doi: 10.1101/2021.07.12.452052 PubMed DOI PMC

Mahtani MM, Willard HF, Physical and genetic mapping of the human X chromosome centromere: Repression of recombination. Genome Res. 8, 100–110 (1998). doi: 10.1101/gr.8.2.100; PubMed DOI

Tsukahara S et al., Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev. 26, 705–713 (2012). doi: 10.1101/gad.183871.111; PubMed DOI PMC

Kawabe A, Nasuda S, Structure and genomic organization of centromeric repeats in Arabidopsis species. Mol. Genet. Genomics 272, 593–602 (2005). doi: 10.1007/s00438-004-1081-x; PubMed DOI

Klein SJ, O’Neill RJ, Transposable elements: Genome innovation, chromosome diversity, and centromere conflict. Chromosome Res. 26, 5–23 (2018). doi: 10.1007/s10577-017-9569-5; PubMed DOI PMC

Malik HS, The centromere-drive hypothesis: A simple basis for centromere complexity. Prog. Mol. Subcell. Biol 48, 33–52 (2009). doi: 10.1007/978-3-642-00182-6_2; PubMed DOI

Haig D, Grafen A, Genetic scrambling as a defence against meiotic drive. J. Theor. Biol 153, 531–558 (1991). doi: 10.1016/S0022-5193(05)80155-9; PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Bimodal centromeres in pentaploid dogroses shed light on their unique meiosis

. 2025 Jul ; 643 (8070) : 148-157. [epub] 20250618

Chromosome-level baobab genome illuminates its evolutionary trajectory and environmental adaptation

. 2024 Oct 12 ; 15 (1) : 8833. [epub] 20241012

The Dynamic Interplay Between Ribosomal DNA and Transposable Elements: A Perspective From Genomics and Cytogenetics

. 2024 Mar 01 ; 41 (3) : .

Chromosome Painting Using Chromosome-Specific BAC Clones

Holocentromeres can consist of merely a few megabase-sized satellite arrays

. 2023 Jun 13 ; 14 (1) : 3502. [epub] 20230613

Cycles of satellite and transposon evolution in Arabidopsis centromeres

. 2023 Jun ; 618 (7965) : 557-565. [epub] 20230517

Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes

. 2023 Feb ; 19 (2) : e1010633. [epub] 20230203

Telomeres and Their Neighbors

. 2022 Sep 16 ; 13 (9) : . [epub] 20220916

Satellite DNAs and human sex chromosome variation

. 2022 Aug ; 128 () : 15-25. [epub] 20220527

Prospects of telomere-to-telomere assembly in barley: Analysis of sequence gaps in the MorexV3 reference genome

. 2022 Jul ; 20 (7) : 1373-1386. [epub] 20220407

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...