Redefining the role of IL-18 in post-surgical recovery and sepsis: a key mediator of inflammation resolution
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-06-00408
Ministerstvo Zdravotnictví Ceské Republiky
NU21-06-00408
Ministerstvo Zdravotnictví Ceské Republiky
00023736
Ústav hematologie a krevní transfuze (UKT)
PubMed
40604830
PubMed Central
PMC12224801
DOI
10.1186/s12967-025-06652-7
PII: 10.1186/s12967-025-06652-7
Knihovny.cz E-zdroje
- Klíčová slova
- Cytokine profiling, IL-18, Inflammation resolution, Monocyte macrophage transition, Recovery, Sepsis,
- MeSH
- interleukin-18 * metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- monocyty metabolismus účinky léků MeSH
- organoidy účinky léků MeSH
- senioři MeSH
- sepse * krev genetika MeSH
- TNF-alfa farmakologie MeSH
- zánět * patologie krev MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- interleukin-18 * MeSH
- TNF-alfa MeSH
BACKGROUND: Timely resolution of innate immune responses activated by surgical intervention is crucial for patient recovery. While cytokines and innate immune cells are critical in inflammation resolution, the specific role of IL-18 in these processes remains controversial and underexplored. METHODS: We investigate determinants of successful recovery using peripheral blood samples from orthopedic surgery (ORT) patients (n = 33) at T0 (before surgery), T1 (24 h after surgery) and T2 (3 days after surgery). Monocytes from ORT patients underwent immunophenotyping together with bulk transcriptomic analysis. We found that IL-18 strongly defines the recovery immune signature. These results were further validated in vitro by comparing IL-18 and TNF-α effects on monocytes, and in 3D human intestine organoids together with single cell (sc)-RNAseq analysis. RESULTS: Transcriptomics of ORT monocytes revealed upregulation of ITG family integrins, namely ITGB3 and ITGB5, CXCL family chemokines, notably CXCL1-3, CXCL5, and SCL/TAL1 factor controlling differentiation and migration, but not pro-inflammatory genes. Similar changes were observed in IL-18 stimulated healthy donor monocytes in vitro, including an increase in CD11b, CD64, and CD86 levels, accompanied by increased phosphorylation of Akt but not NFκB. These changes were attenuated in the presence of TNF-α, thus showing a unique role of IL-18 when acting alone without its most frequent paired cytokine TNF-α. We further confirmed that IL-18 induces monocyte-macrophage transition and migration using human intestinal organoids. Finally, TNF-α/IL-18 ratio showed a high predictive value of clinical severity in septic patients. CONCLUSIONS: We propose a novel role of IL-18 on monocyte migration and macrophage transition characterizing successful orthopedic surgery recovery, as well as the ratio of IL-18/TNF-α as a novel marker of inflammation resolution, with potential implications for patient monitoring and therapeutic strategies.
Biomedical Center Faculty of Medicine in Pilsen Charles University Prague Czech Republic
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Molecular Biology and Genetics Democritus University of Thrace Alexandroupolis Greece
Institute of Hematology and Blood Transfusion Prague Czech Republic
International Clinical Research Center Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Margraf A, Ludwig N, Zarbock A, Rossaint J. Systemic inflammatory response syndrome after surgery: mechanisms and protection. Anesth Analg. 2020;131(6):1693–707. 10.1213/ANE.0000000000005175. PubMed
Helmy SAK, Wahby MAM, El-Nawaway M. The effect of anaesthesia and surgery on plasma cytokine production. Anaesthesia. 1999;54(8):733–8. 10.1046/J.1365-2044.1999.00947.X. PubMed
Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat Immunol. 2018;19(4):327–41. 10.1038/S41590-018-0064-8. PubMed PMC
Reikeras O, Borgen P, Reseland JE, Lyngstadaas SP. Changes in serum cytokines in response to musculoskeletal surgical trauma. BMC Res Notes. 2014. 10.1186/1756-0500-7-128. PubMed PMC
Gainaru G, Papadopoulos A, Tsangaris I, Lada M, Giamarellos-Bourboulis EJ, Pistiki A. Increases in inflammatory and CD14dim/CD16pos/CD45pos patrolling monocytes in sepsis: correlation with final outcome. Crit Care. 2018. 10.1186/S13054-018-1977-1. PubMed PMC
Hortová-Kohoutková M, Lázničková P, Bendíčková K, et al. Differences in monocyte subsets are associated with short-term survival in patients with septic shock. J Cell Mol Med. 2020;24(21):12504–12. 10.1111/jcmm.15791. PubMed PMC
Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: from understandings to therapeutic applications. Biomaterials. 2021;277: 121114. 10.1016/J.BIOMATERIALS.2021.121114. PubMed PMC
Basil MC, Levy BD. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol. 2015;16(1):51–67. 10.1038/nri.2015.4. PubMed PMC
Fredman G, Khan S. Specialized pro-resolving mediators enhance the clearance of dead cells. Immunol Rev. 2023;319(1):151–7. 10.1111/IMR.13278. PubMed
Andrejčinová I, Blažková G, Papatheodorou I, et al. Persisting IL-18 levels after COVID-19 correlate with markers of cardiovascular inflammation reflecting potential risk of CVDs development. Heliyon. 2024. 10.1016/J.HELIYON.2024.E25938. PubMed PMC
Iwamoto S, Iwai S, Tsujiyama K, et al. TNF-α drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses. J Immunol. 2007;179(3):1449–57. 10.4049/JIMMUNOL.179.3.1449. PubMed
Leyfer D, Bond A, Tworog E, et al. Cis-element clustering correlates with dose-dependent pro- and antisignaling effects of IL18. Genes Immunity. 2004;5(5):354–62. 10.1038/sj.gene.6364099. PubMed
Hoshino T, Wiltrout RH, Young HA. IL-18 is a potent coinducer of IL-13 in NK and T cells: a new potential role for IL-18 in modulating the immune response. J Immunol. 1999;162(9):5070–7. 10.4049/JIMMUNOL.162.9.5070. PubMed
Junying Y, Kejin H, Kim SO, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324(5928):797–801. 10.1126/SCIENCE.1172482. PubMed PMC
Jose SS, De Zuani M, Tidu F, et al. Comparison of two human organoid models of lung and intestinal inflammation reveals Toll-like receptor signalling activation and monocyte recruitment. Clin Transl Immunol. 2020. 10.1002/CTI2.1131. PubMed PMC
McCracken KW, Howell JC, Wells JM, Spence JR. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc. 2011;6(12):1920–8. 10.1038/NPROT.2011.410. PubMed PMC
Bosáková V, Papatheodorou I, Kafka F, et al. Serotonin attenuates tumor necrosis factor-induced intestinal inflammation by interacting with human mucosal tissue. Exp Mol Med. 2025. 10.1038/s12276-025-01397-1. PubMed PMC
Lê S, Josse J, Husson F. FactoMineR: an r package for multivariate analysis. J Stat Softw. 2008;025(i01):1–18. 10.18637/JSS.V025.I01.
Rohart F, Gautier B, Singh A, Lê Cao KA. mixOmics: aAn R package for ’omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13(11): e1005752. 10.1371/JOURNAL.PCBI.1005752. PubMed PMC
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15. 10.1038/S41587-019-0201-4. PubMed PMC
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. 10.1093/BIOINFORMATICS/BTP352. PubMed PMC
Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9. 10.1093/BIOINFORMATICS/BTU638. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014. 10.1186/S13059-014-0550-8. PubMed PMC
Wu T, Hu E, Xu S, et al. CclusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Cambridge Mass). 2021. 10.1016/J.XINN.2021.100141. PubMed PMC
Gao CH, Yu G, Cai P. ggVennDiagram: an intuitive, easy-to-use, and highly customizable r package to generate Venn diagram. Front Genet. 2021. 10.3389/FGENE.2021.706907. PubMed PMC
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–9. 10.1093/BIOINFORMATICS/BTW313. PubMed
Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888-1902.e21. 10.1016/J.CELL.2019.05.031. PubMed PMC
Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nature Immunol. 2019;20(2):163–72. 10.1038/s41590-018-0276-y. PubMed PMC
Wynn JL, Wilson CS, Hawiger J, et al. Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18. Proc Natl Acad Sci USA. 2016;113(19):E2627–35. 10.1073/PNAS.1515793113/SUPPL_FILE/PNAS.1515793113.SAPP.PDF. PubMed PMC
Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2):27–37. 10.1097/AIA.0B013E318034194E. PubMed PMC
Brooks PC, Clark RAF, Cheresh DA. Requirement of vascular integrin αvβ3 for angiogenesis. Science (1979). 1994;264(5158):569–71. 10.1126/SCIENCE.7512751. PubMed
Woodfin A, Voisin MB, Beyrau M, et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol. 2011;12(8):761–9. 10.1038/ni.2062. PubMed PMC
Tsukamoto M, Seta N, Yoshimoto K, Suzuki K, Yamaoka K, Takeuchi T. CD14brightCD16+ intermediate monocytes are induced by interleukin-10 and positively correlate with disease activity in rheumatoid arthritis. Arthritis Res Ther. 2017;19(1):1–10. 10.1186/S13075-016-1216-6/FIGURES/5. PubMed PMC
Kapellos TS, Bonaguro L, Gemünd I, et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol. 2019;10:482347. 10.3389/FIMMU.2019.02035/PDF. PubMed PMC
Rex DAB, Agarwal N, Prasad TSK, Kandasamy RK, Subbannayya Y, Pinto SM. A comprehensive pathway map of IL-18-mediated signalling. J Cell Commun Signal. 2020;14(2):257–66. 10.1007/S12079-019-00544-4. PubMed PMC
Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198(3):1006–14. 10.4049/JIMMUNOL.1601515. PubMed
Guerau-de-Arellano M, Piedra-Quintero ZL, Tsichlis PN. Akt isoforms in the immune system. Front Immunol. 2022. 10.3389/FIMMU.2022.990874. PubMed PMC
Takahama M, Patil A, Richey G, et al. A pairwise cytokine code explains the organism-wide response to sepsis. Nat Immunol. 2024;25(2):226–39. 10.1038/s41590-023-01722-8. PubMed PMC
Ihim SA, Abubakar SD, Zian Z, et al. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: biological role in induction, regulation, and treatment. Front Immunol. 2022;13: 919973. 10.3389/FIMMU.2022.919973/PDF. PubMed PMC
Vanden Berghe T, Demon D, Bogaert P, et al. Simultaneous targeting of IL-1 and IL-18 is required for protection against inflammatory and septic shock. Am J Respir Crit Care Med. 2014;189(3):282–91. 10.1164/RCCM.201308-1535OC/SUPPL_FILE/DISCLOSURES.PDF. PubMed
Kamimura Y, Xiong Y, Iglesias PA, Hoeller O, Bolourani P, Devreotes PN. PIP3-independent activation of TorC2 and PKB at the cell’s leading edge mediates chemotaxis. Curr Biol. 2008;18(14):1034–43. 10.1016/j.cub.2008.06.068. PubMed PMC
Stokoe D, Stephens LR, Copeland T, et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science (1979). 1997;277(5325):567–70. 10.1126/SCIENCE.277.5325.567. PubMed
Meuillet EJ. Novel inhibitors of AKT: assessment of a different approach targeting the Pleckstrin homology domain. Curr Med Chem. 2011;18(18):2727–42. 10.2174/092986711796011292. PubMed PMC
Gao A, Lin Y, Chai Y, Han J, Wu L, Ye J. CXCL12/CXCR4 axis promotes the chemotaxis and phagocytosis of B Cells through the PI3K-AKT signaling pathway in an early vertebrate. J Immunol. 2024;213(11):1676–90. 10.4049/JIMMUNOL.2300562. PubMed
Shao X, Wu B, Cheng L, et al. Distinct alterations of CD68+CD163+ M2-like macrophages and myeloid-derived suppressor cells in newly diagnosed primary immune thrombocytopenia with or without CR after high-dose dexamethasone treatment. J Transl Med. 2018. 10.1186/S12967-018-1424-8. PubMed PMC
Bakheit HF, Taurin S, Elamin EM, Bakhiet M. Akt1 players promote PMA U937 cell line differentiation into macrophage-like cells. Arab Gulf J Sci Res. 2023;42(4):1257–70. 10.1108/AGJSR-12-2022-0317/FULL/PDF.
Dai SM, Shan ZZ, Xu H, Nishioka K. Cellular targets of interleukin-18 in rheumatoid arthritis. Ann Rheum Dis. 2007;66(11):1411–8. 10.1136/ARD.2006.067793/ASSET/A4C6B464-A171-41E1-945B-0BB394D256B4/MAIN.ASSETS/GR2.SML. PubMed PMC
Dai SM, Matsuno H, Nakamura H, Nishioka K, Yudoh K. Interleukin-18 enhances monocyte tumor necrosis factor alpha and interleukin-1beta production induced by direct contact with T lymphocytes: implications in rheumatoid arthritis. Arthritis Rheum. 2004;50(2):432–43. 10.1002/ART.20064. PubMed
Kimura K, Sekiguchi S, Hayashi S, et al. Role of interleukin-18 in intrahepatic inflammatory cell recruitment in acute liver injury. J Leukoc Biol. 2011;89(3):433–42. 10.1189/JLB.0710412. PubMed
Mierzchala-Pasierb M, Krzystek-Korpacka M, Lesnik P, et al. Interleukin-18 serum levels in sepsis: correlation with disease severity and inflammatory markers. Cytokine. 2019;120:22–7. 10.1016/J.CYTO.2019.04.003. PubMed
Bastian D, Tamburstuen MV, Lyngstadaas SP, Reikerås O. Systemic and local cytokine kinetics after total hip replacement surgery. Eur Surg Res. 2008;41(4):334–40. 10.1159/000157176. PubMed
Rouard H, Tamasdan S, Moncuit J, et al. Fc receptors as targets for immunotherapy. Int Rev Immunol. 1997;16(1–2):147–85. 10.3109/08830189709045707. PubMed
Kalina U, Kauschat D, Koyama N, et al. IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-gamma production by the stress kinase p38 and by the extracellular regulated kinases p44erk-1 and p42erk-21. J Immunol. 2000;165(3):1307–13. 10.4049/JIMMUNOL.165.3.1307. PubMed
Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 1999;401(6748):82–5. 10.1038/43466. PubMed
Arranz A, Doxaki C, Vergadi E, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci USA. 2012;109(24):9517–22. 10.1073/PNAS.1119038109. PubMed PMC
Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 2019. 10.3389/FIMMU.2019.01084. PubMed PMC
Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36(6):320–8. 10.1016/J.TIBS.2011.03.006/ASSET/E10BEF26-4139-4C7E-9520-624C53D11BE0/MAIN.ASSETS/GR3.SML. PubMed PMC
Swann JW, Olson OC, Passegué E. Made to order: emergency myelopoiesis and demand-adapted innate immune cell production. Nat Rev Immunol. 2024;24(8):596–613. 10.1038/s41577-024-00998-7. PubMed
Orozco SL, Canny SP, Hamerman JA. Signals governing monocyte differentiation during inflammation. Curr Opin Immunol. 2021;73:16–24. 10.1016/J.COI.2021.07.007. PubMed PMC
Yoo JK, Kwon H, Khil LY, Zhang L, Jun HS, Yoon JW. IL-18 induces monocyte chemotactic protein-1 production in macrophages through the phosphatidylinositol 3-kinase/Akt and MEK/ERK1/2 pathways. J Immunol. 2005;175(12):8280–6. 10.4049/JIMMUNOL.175.12.8280. PubMed
Coma G, Peña R, Blanco J, et al. Treatment of monocytes with interleukin (IL)-12 plus IL-18 stimulates survival, differentiation and the production of CXC chemokine ligands (CXCL)8, CXCL9 and CXCL10. Clin Exp Immunol. 2006;145(3):535–44. 10.1111/J.1365-2249.2006.03145.X. PubMed PMC
Zhou C, Gao Y, Ding P, Wu T, Ji G. The role of CXCL family members in different diseases. Cell Death Discov. 2023. 10.1038/S41420-023-01524-9. PubMed PMC
Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89. 10.1038/NRI2156. PubMed
Mass E, Nimmerjahn F, Kierdorf K, Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol. 2023;23(9):563–79. 10.1038/s41577-023-00848-y. PubMed PMC
Desalegn G, Pabst O. Inflammation triggers immediate rather than progressive changes in monocyte differentiation in the small intestine. Nat Commun. 2019;10(1):1–14. 10.1038/s41467-019-11148-2. PubMed PMC
De Schepper S, Verheijden S, Aguilera-Lizarraga J, et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell. 2018;175(2):400-415.e13. 10.1016/J.CELL.2018.07.048/ATTACHMENT/AF0FC8B9-46F7-4796-B799-29D9A8463A88/MMC4.XLSX. PubMed
Shaw TN, Houston SA, Wemyss K, et al. Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J Exp Med. 2018;215(6):1507–18. 10.1084/JEM.20180019. PubMed PMC
Rumianek AN, Davies B, Channon KM, Greaves DR, Purvis GSD. A human CD68 promoter-driven inducible Cre-recombinase mouse line allows specific targeting of tissue resident macrophages. Front Immunol. 2022;13: 918636. 10.3389/FIMMU.2022.918636/FULL. PubMed PMC
Iqbal AJ, McNeill E, Kapellos TS, et al. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood. 2014;124(15):e33–44. 10.1182/BLOOD-2014-04-568691. PubMed PMC
Dey S, Shi Y, Brandt SJ. Novel function of the TAL1/SCL transcription factor in differentiation of murine bone marrow monocytes. Blood. 2006;108(11):1272–1272. 10.1182/BLOOD.V108.11.1272.1272.
Chiang HY, Lu HH, Sudhakar JN, et al. IL-22 initiates an IL-18-dependent epithelial response circuit to enforce intestinal host defence. Nat Commun. 2022;13(1):1–19. 10.1038/s41467-022-28478-3. PubMed PMC
Mertens RT, Misra A, Xiao P, et al. A metabolic switch orchestrated by IL-18 and the cyclic dinucleotide cGAMP programs intestinal tolerance. Immunity. 2024;57(9):2077-2094.e12. 10.1016/J.IMMUNI.2024.06.001. PubMed
Wu Q, Xiao Z, Pu Y, et al. TnI and IL-18 levels are associated with prognosis of sepsis. Postgrad Med J. 2019;95(1123):240–4. 10.1136/POSTGRADMEDJ-2018-136371. PubMed