Serotonin attenuates tumor necrosis factor-induced intestinal inflammation by interacting with human mucosal tissue
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39894823
PubMed Central
PMC11873120
DOI
10.1038/s12276-025-01397-1
PII: 10.1038/s12276-025-01397-1
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- monocyty metabolismus imunologie MeSH
- pohyb buněk MeSH
- serotonin * metabolismus MeSH
- signální transdukce MeSH
- střevní sliznice * metabolismus patologie MeSH
- TNF-alfa metabolismus MeSH
- zánět metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- serotonin * MeSH
- TNF-alfa MeSH
The intestine hosts the largest immune system and peripheral nervous system in the human body. The gut‒brain axis orchestrates communication between the central and enteric nervous systems, playing a pivotal role in regulating overall body function and intestinal homeostasis. Here, using a human three-dimensional in vitro culture model, we investigated the effects of serotonin, a neuromodulator produced in the gut, on immune cell and intestinal tissue interactions. Serotonin attenuated the tumor necrosis factor-induced proinflammatory response, mostly by affecting the expression of chemokines. Serotonin affected the phenotype and distribution of tissue-migrating monocytes, without direct contact with the cells, by remodeling the intestinal tissue. Collectively, our results show that serotonin plays a crucial role in communication among gut-brain axis components and regulates monocyte migration and plasticity, thereby contributing to gut homeostasis and the progression of inflammation. In vivo studies focused on the role of neuromodulators in gut inflammation have shown controversial results, highlighting the importance of human experimental models. Moreover, our results emphasize the importance of human health research in human cell-based models and suggest that the serotonin signaling pathway is a new therapeutic target for inflammatory bowel disease.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Molecular Biology and Genetics Democritus University of Thrace Alexandroupolis Greece
Institute of Hematology and Blood Transfusion Prague Czech Republic
International Clinical Research Center Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Jacobson, A., Yang, D., Vella, M. & Chiu, I. M. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol.14, 555–565 (2021). PubMed PMC
Serio, R. & Zizzo, M. G. The multiple roles of dopamine receptor activation in the modulation of gastrointestinal motility and mucosal function. Auton. Neurosci. 244, 103041 (2023). PubMed
Martin, C. R., Osadchiy, V., Kalani, A. & Mayer, E. A. The brain–gut–microbiome axis. Cell. Mol. Gastroenterol. Hepatol.6, 133–148 (2018). PubMed PMC
Eisenhofer, G. et al. Substantial production of dopamine in the human gastrointestinal tract. J. Clin. Endocrinol. Metab.82, 3864–3871 (1997). PubMed
Xue, R. et al. Peripheral dopamine controlled by gut microbes inhibits invariant natural killer T cell-mediated hepatitis. Front. Immunol.9, 2398 (2018). PubMed PMC
Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell161, 264–276 (2015). PubMed PMC
Barandouzi, Z. A. et al. Associations of neurotransmitters and the gut microbiome with emotional distress in mixed type of irritable bowel syndrome. Sci. Rep.12, 1648 (2022). PubMed PMC
Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol.14, 667–685 (2014). PubMed
Viola, M. F. & Boeckxstaens, G. Niche-specific functional heterogeneity of intestinal resident macrophages. Gut70, 1383–1395 (2021). PubMed PMC
Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity38, 79–91 (2013). PubMed PMC
Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity38, 792–804 (2013). PubMed PMC
Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol.14, 392–404 (2014). PubMed
Bujko, A. et al. Transcriptional and functional profiling defines human small intestinal macrophage subsets. J. Exp. Med.215, 441–458 (2018). PubMed PMC
Na, Y. R., Stakenborg, M., Seok, S. H. & Matteoli, G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat. Rev. Gastroenterol. Hepatol.16, 531–543 (2019). PubMed
Schwerd, T. et al. Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann–Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn’s disease. Gut66, 1060–1073 (2017). PubMed PMC
Smith, A. M. et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J. Exp. Med.206, 1883–1897 (2009). PubMed PMC
Bain, C. C. et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol.6, 498–510 (2013). PubMed PMC
Bernardo, D. et al. Human intestinal pro-inflammatory CD11chighCCR2+CX3CR1+ macrophages, but not their tolerogenic CD11c−CCR2−CX3CR1− counterparts, are expanded in inflammatory bowel disease. Mucosal Immunol.11, 1114–1126 (2018). PubMed
Van Loo, G. & Bertrand, M. J. M. Death by TNF: a road to inflammation. Nat. Rev. Immunol.23, 289–303 (2023). PubMed PMC
Levin, A. D. & Van Den Brink, G. R. Selective inhibition of mucosal serotonin as treatment for IBD? Gut63, 866–867 (2014). PubMed
Baganz, N. L. & Blakely, R. D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci.4, 48–63 (2013). PubMed PMC
Dong, Y. et al. Role of serotonin on the intestinal mucosal immune response to stress-induced diarrhea in weaning mice. BMC Gastroenterol.17, 82 (2017). PubMed PMC
Wang, S. J., Sharkey, K. A. & McKay, D. M. Modulation of the immune response by helminths: a role for serotonin? Biosci. Rep.38, BSR20180027 (2018). PubMed PMC
Dürk, T. et al. 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int. Immunol.17, 599–606 (2005). PubMed
Soga, F., Katoh, N., Inoue, T. & Kishimoto, S. Serotonin activates human monocytes and prevents apoptosis. J. Invest. Dermatol.127, 1947–1955 (2007). PubMed
Mikulski, Z. et al. Serotonin activates murine alveolar macrophages through 5-HT2C receptors. Am. J. Physiol. Lung Cell. Mol. Physiol.299, L272–L280 (2010). PubMed
Huhta, H. et al. The expression of Toll-like receptors in normal human and murine gastrointestinal organs and the effect of microbiome and cancer. J. Histochem. Cytochem.64, 470–482 (2016). PubMed PMC
Haub, S. et al. Enhancement of intestinal inflammation in mice lacking interleukin 10 by deletion of the serotonin reuptake transporter: role of serotonin in intestinal inflammation. Neurogastroenterol. Motil.22, 826–e229 (2010). PubMed PMC
Ghia, J. et al. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology137, 1649–1660 (2009). PubMed
Yu, B. et al. Serotonin 5-hydroxytryptamine 2A receptor activation suppresses tumor necrosis factor-α-induced inflammation with extraordinary potency. J Pharmacol. Exp. Ther.327, 316–323 (2008). PubMed
Bosáková, V. et al. Lung organoids—the ultimate tool to dissect pulmonary diseases? Front. Cell Dev. Biol.10, 899368 (2022). PubMed PMC
Jose, S. S. et al. Comparison of two human organoid models of lung and intestinal inflammation reveals Toll-like receptor signalling activation and monocyte recruitment. Clin. Transl. Immunol.9, e1131 (2020). PubMed PMC
Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science324, 797–801 (2009). PubMed PMC
McCracken, K. W., Howell, J. C., Wells, J. M. & Spence, J. R. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc.6, 1920–1928 (2011). PubMed PMC
Kawai, T. & Akira, S. TLR signaling. Cell Death Differ.13, 816–825 (2006). PubMed
Pelletier, M. & Siegel, R. M. Wishing away inflammation? New links between serotonin and TNF signaling. Mol. Interv.9, 299–301 (2009). PubMed PMC
Di Giovangiulio, M. et al. The neuromodulation of the intestinal immune system and its relevance in inflammatory bowel disease. Front. Immunol. 6, 590 (2015). PubMed PMC
Price, A. E. et al. A map of Toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity49, 560–575.e6 (2018). PubMed PMC
Loh, J. S. et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Sig. Transduct. Target. Ther. 9, 37 (2024). PubMed PMC
Jameson, K. G., Olson, C. A., Kazmi, S. A. & Hsiao, E. Y. Toward understanding microbiome–neuronal signaling. Mol. Cell78, 577–583 (2020). PubMed
Hou, K. et al. Microbiota in health and diseases. Sig. Transduct. Target. Ther. 7, 135 (2022). PubMed PMC
Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol.10, 473–486 (2013). PubMed PMC
Magro, F. et al. Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease. Dig. Dis. Sci.47, 216–224 (2002). PubMed
Szebeni, B. et al. Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin. Exp. Immunol.151, 34–41 (2007). PubMed PMC
Frolova, L., Drastich, P., Rossmann, P., Klimesova, K. & Tlaskalova-Hogenova, H. Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. J. Histochem. Cytochem. 56, 267–274 (2008). PubMed PMC
Brown, M., Hughes, K. R., Moossavi, S., Robins, A. & Mahida, Y. R. Toll-like receptor expression in crypt epithelial cells, putative stem cells and intestinal myofibroblasts isolated from controls and patients with inflammatory bowel disease. Clin. Exp. Immunol.178, 28–39 (2014). PubMed PMC
Ma, S., Zhang, J., Liu, H., Li, S. & Wang, Q. The role of tissue-resident macrophages in the development and treatment of inflammatory bowel disease. Front. Cell Dev. Biol.10, 896591 (2022). PubMed PMC
Saito, Y. et al. Effect of short-time treatment with TNF-α on stem cell activity and barrier function in enteroids. Cytotechnology73, 669–682 (2021). PubMed PMC
Worthington, J. J., Reimann, F. & Gribble, F. M. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol.11, 3–20 (2018). PubMed
Moran, G. W., Pennock, J. & McLaughlin, J. T. Enteroendocrine cells in terminal ileal Crohn’s disease. J.Crohn’s Colitis6, 871–880 (2012). PubMed
El‐Salhy, M., Danielsson, Å., Stenling, R. & Grimelius, L. Colonic endocrine cells in inflammatory bowel disease. J. Intern. Med.242, 413–419 (1997). Nov. PubMed
Tackett, J. J., Gandotra, N., Bamdad, M. C., Muise, E. D. & Cowles, R. A. Enhanced serotonin signaling stimulates ordered intestinal mucosal growth. J. Surg. Res.208, 198–203 (2017). PubMed
Garrido-Trigo, A. et al. Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease. Nat. Commun.14, 4506 (2023). PubMed PMC
Guilliams, M., Mildner, A. & Yona, S. Developmental and functional heterogeneity of monocytes. Immunity49, 595–613 (2018). PubMed
Schmidl, C. et al. Transcription and enhancer profiling in human monocyte subsets. Blood123, e90–e99 (2014). PubMed
Schittenhelm, L., Hilkens, C. M. & Morrison, V. L. β2 Integrins as regulators of dendritic cell, monocyte, and macrophage function. Front. Immunol.8, 1866 (2017). PubMed PMC
Chen, Y., Zhang, J., Cui, W. & Silverstein, R. L. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. J. Exp. Med.219, e20211314 (2022). PubMed PMC
Linsley, P. S. & Ledbetter, J. A. The role of the CD28 receptor during T cell responses to antigen. Annu. Rev. Immunol.11, 191–212 (1993). PubMed
Linsley, P. S. et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity1, 793–801 (1994). PubMed
Pinto, B. F. et al. CD86 expression by monocytes influences an immunomodulatory profile in asymptomatic patients with chronic chagas disease. Front. Immunol.9, 454 (2018). PubMed PMC
Yanagawa, Y., Matsumoto, M. & Togashi, H. Enhanced dendritic cell antigen uptake via α2 adrenoceptor-mediated pi3k activation following brief exposure to noradrenaline. J. Immunol.185, 5762–5768 (2010). PubMed
Nijhuis L. E. et al. Adrenergic β2 receptor activation stimulates anti-inflammatory properties of dendritic cells in vitro. PLoS ONE22, e85086 (2014). PubMed PMC
Maestroni, G. J. M. & Mazzola, P. Langerhans cells β2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity. J. Neuroimmunol.144, 91–99 (2003). PubMed
Manni, M., Granstein, R. D. & Maestroni, G. β2-Adrenergic agonists bias TLR-2 and NOD2 activated dendritic cells towards inducing an IL-17 immune response. Cytokine55, 380–386 (2011). PubMed PMC
Mikocka-Walus, A., Ford, A. C. & Drossman, D. A. Antidepressants in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol.17, 184–192 (2020). PubMed
Ba, D. M. et al. Clinical outcomes associated with antidepressant use in inflammatory bowel disease patients and a matched control cohort. Sci. Rep.14, 1060 (2024). PubMed PMC
Turkin, A., Tuchina, O. & Klempin, F. Microglia function on precursor cells in the adult hippocampus and their responsiveness to serotonin signaling. Front. Cell Dev. Biol9, 665739 (2021). PubMed PMC
Albertini, G. et al. Serotonin sensing by microglia conditions the proper development of neuronal circuits and of social and adaptive skills. Mol. Psychiatry28, 2328–2342 (2023). PubMed