Serotonin attenuates tumor necrosis factor-induced intestinal inflammation by interacting with human mucosal tissue

. 2025 Feb ; 57 (2) : 364-378. [epub] 20250203

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39894823
Odkazy

PubMed 39894823
PubMed Central PMC11873120
DOI 10.1038/s12276-025-01397-1
PII: 10.1038/s12276-025-01397-1
Knihovny.cz E-zdroje

The intestine hosts the largest immune system and peripheral nervous system in the human body. The gut‒brain axis orchestrates communication between the central and enteric nervous systems, playing a pivotal role in regulating overall body function and intestinal homeostasis. Here, using a human three-dimensional in vitro culture model, we investigated the effects of serotonin, a neuromodulator produced in the gut, on immune cell and intestinal tissue interactions. Serotonin attenuated the tumor necrosis factor-induced proinflammatory response, mostly by affecting the expression of chemokines. Serotonin affected the phenotype and distribution of tissue-migrating monocytes, without direct contact with the cells, by remodeling the intestinal tissue. Collectively, our results show that serotonin plays a crucial role in communication among gut-brain axis components and regulates monocyte migration and plasticity, thereby contributing to gut homeostasis and the progression of inflammation. In vivo studies focused on the role of neuromodulators in gut inflammation have shown controversial results, highlighting the importance of human experimental models. Moreover, our results emphasize the importance of human health research in human cell-based models and suggest that the serotonin signaling pathway is a new therapeutic target for inflammatory bowel disease.

Zobrazit více v PubMed

Jacobson, A., Yang, D., Vella, M. & Chiu, I. M. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol.14, 555–565 (2021). PubMed PMC

Serio, R. & Zizzo, M. G. The multiple roles of dopamine receptor activation in the modulation of gastrointestinal motility and mucosal function. Auton. Neurosci. 244, 103041 (2023). PubMed

Martin, C. R., Osadchiy, V., Kalani, A. & Mayer, E. A. The brain–gut–microbiome axis. Cell. Mol. Gastroenterol. Hepatol.6, 133–148 (2018). PubMed PMC

Eisenhofer, G. et al. Substantial production of dopamine in the human gastrointestinal tract. J. Clin. Endocrinol. Metab.82, 3864–3871 (1997). PubMed

Xue, R. et al. Peripheral dopamine controlled by gut microbes inhibits invariant natural killer T cell-mediated hepatitis. Front. Immunol.9, 2398 (2018). PubMed PMC

Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell161, 264–276 (2015). PubMed PMC

Barandouzi, Z. A. et al. Associations of neurotransmitters and the gut microbiome with emotional distress in mixed type of irritable bowel syndrome. Sci. Rep.12, 1648 (2022). PubMed PMC

Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol.14, 667–685 (2014). PubMed

Viola, M. F. & Boeckxstaens, G. Niche-specific functional heterogeneity of intestinal resident macrophages. Gut70, 1383–1395 (2021). PubMed PMC

Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity38, 79–91 (2013). PubMed PMC

Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity38, 792–804 (2013). PubMed PMC

Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol.14, 392–404 (2014). PubMed

Bujko, A. et al. Transcriptional and functional profiling defines human small intestinal macrophage subsets. J. Exp. Med.215, 441–458 (2018). PubMed PMC

Na, Y. R., Stakenborg, M., Seok, S. H. & Matteoli, G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat. Rev. Gastroenterol. Hepatol.16, 531–543 (2019). PubMed

Schwerd, T. et al. Impaired antibacterial autophagy links granulomatous intestinal inflammation in Niemann–Pick disease type C1 and XIAP deficiency with NOD2 variants in Crohn’s disease. Gut66, 1060–1073 (2017). PubMed PMC

Smith, A. M. et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J. Exp. Med.206, 1883–1897 (2009). PubMed PMC

Bain, C. C. et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol.6, 498–510 (2013). PubMed PMC

Bernardo, D. et al. Human intestinal pro-inflammatory CD11chighCCR2+CX3CR1+ macrophages, but not their tolerogenic CD11c−CCR2−CX3CR1− counterparts, are expanded in inflammatory bowel disease. Mucosal Immunol.11, 1114–1126 (2018). PubMed

Van Loo, G. & Bertrand, M. J. M. Death by TNF: a road to inflammation. Nat. Rev. Immunol.23, 289–303 (2023). PubMed PMC

Levin, A. D. & Van Den Brink, G. R. Selective inhibition of mucosal serotonin as treatment for IBD? Gut63, 866–867 (2014). PubMed

Baganz, N. L. & Blakely, R. D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem. Neurosci.4, 48–63 (2013). PubMed PMC

Dong, Y. et al. Role of serotonin on the intestinal mucosal immune response to stress-induced diarrhea in weaning mice. BMC Gastroenterol.17, 82 (2017). PubMed PMC

Wang, S. J., Sharkey, K. A. & McKay, D. M. Modulation of the immune response by helminths: a role for serotonin? Biosci. Rep.38, BSR20180027 (2018). PubMed PMC

Dürk, T. et al. 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int. Immunol.17, 599–606 (2005). PubMed

Soga, F., Katoh, N., Inoue, T. & Kishimoto, S. Serotonin activates human monocytes and prevents apoptosis. J. Invest. Dermatol.127, 1947–1955 (2007). PubMed

Mikulski, Z. et al. Serotonin activates murine alveolar macrophages through 5-HT2C receptors. Am. J. Physiol. Lung Cell. Mol. Physiol.299, L272–L280 (2010). PubMed

Huhta, H. et al. The expression of Toll-like receptors in normal human and murine gastrointestinal organs and the effect of microbiome and cancer. J. Histochem. Cytochem.64, 470–482 (2016). PubMed PMC

Haub, S. et al. Enhancement of intestinal inflammation in mice lacking interleukin 10 by deletion of the serotonin reuptake transporter: role of serotonin in intestinal inflammation. Neurogastroenterol. Motil.22, 826–e229 (2010). PubMed PMC

Ghia, J. et al. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology137, 1649–1660 (2009). PubMed

Yu, B. et al. Serotonin 5-hydroxytryptamine 2A receptor activation suppresses tumor necrosis factor-α-induced inflammation with extraordinary potency. J Pharmacol. Exp. Ther.327, 316–323 (2008). PubMed

Bosáková, V. et al. Lung organoids—the ultimate tool to dissect pulmonary diseases? Front. Cell Dev. Biol.10, 899368 (2022). PubMed PMC

Jose, S. S. et al. Comparison of two human organoid models of lung and intestinal inflammation reveals Toll-like receptor signalling activation and monocyte recruitment. Clin. Transl. Immunol.9, e1131 (2020). PubMed PMC

Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science324, 797–801 (2009). PubMed PMC

McCracken, K. W., Howell, J. C., Wells, J. M. & Spence, J. R. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc.6, 1920–1928 (2011). PubMed PMC

Kawai, T. & Akira, S. TLR signaling. Cell Death Differ.13, 816–825 (2006). PubMed

Pelletier, M. & Siegel, R. M. Wishing away inflammation? New links between serotonin and TNF signaling. Mol. Interv.9, 299–301 (2009). PubMed PMC

Di Giovangiulio, M. et al. The neuromodulation of the intestinal immune system and its relevance in inflammatory bowel disease. Front. Immunol. 6, 590 (2015). PubMed PMC

Price, A. E. et al. A map of Toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity49, 560–575.e6 (2018). PubMed PMC

Loh, J. S. et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Sig. Transduct. Target. Ther. 9, 37 (2024). PubMed PMC

Jameson, K. G., Olson, C. A., Kazmi, S. A. & Hsiao, E. Y. Toward understanding microbiome–neuronal signaling. Mol. Cell78, 577–583 (2020). PubMed

Hou, K. et al. Microbiota in health and diseases. Sig. Transduct. Target. Ther. 7, 135 (2022). PubMed PMC

Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol.10, 473–486 (2013). PubMed PMC

Magro, F. et al. Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease. Dig. Dis. Sci.47, 216–224 (2002). PubMed

Szebeni, B. et al. Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin. Exp. Immunol.151, 34–41 (2007). PubMed PMC

Frolova, L., Drastich, P., Rossmann, P., Klimesova, K. & Tlaskalova-Hogenova, H. Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. J. Histochem. Cytochem. 56, 267–274 (2008). PubMed PMC

Brown, M., Hughes, K. R., Moossavi, S., Robins, A. & Mahida, Y. R. Toll-like receptor expression in crypt epithelial cells, putative stem cells and intestinal myofibroblasts isolated from controls and patients with inflammatory bowel disease. Clin. Exp. Immunol.178, 28–39 (2014). PubMed PMC

Ma, S., Zhang, J., Liu, H., Li, S. & Wang, Q. The role of tissue-resident macrophages in the development and treatment of inflammatory bowel disease. Front. Cell Dev. Biol.10, 896591 (2022). PubMed PMC

Saito, Y. et al. Effect of short-time treatment with TNF-α on stem cell activity and barrier function in enteroids. Cytotechnology73, 669–682 (2021). PubMed PMC

Worthington, J. J., Reimann, F. & Gribble, F. M. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol.11, 3–20 (2018). PubMed

Moran, G. W., Pennock, J. & McLaughlin, J. T. Enteroendocrine cells in terminal ileal Crohn’s disease. J.Crohn’s Colitis6, 871–880 (2012). PubMed

El‐Salhy, M., Danielsson, Å., Stenling, R. & Grimelius, L. Colonic endocrine cells in inflammatory bowel disease. J. Intern. Med.242, 413–419 (1997). Nov. PubMed

Tackett, J. J., Gandotra, N., Bamdad, M. C., Muise, E. D. & Cowles, R. A. Enhanced serotonin signaling stimulates ordered intestinal mucosal growth. J. Surg. Res.208, 198–203 (2017). PubMed

Garrido-Trigo, A. et al. Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease. Nat. Commun.14, 4506 (2023). PubMed PMC

Guilliams, M., Mildner, A. & Yona, S. Developmental and functional heterogeneity of monocytes. Immunity49, 595–613 (2018). PubMed

Schmidl, C. et al. Transcription and enhancer profiling in human monocyte subsets. Blood123, e90–e99 (2014). PubMed

Schittenhelm, L., Hilkens, C. M. & Morrison, V. L. β2 Integrins as regulators of dendritic cell, monocyte, and macrophage function. Front. Immunol.8, 1866 (2017). PubMed PMC

Chen, Y., Zhang, J., Cui, W. & Silverstein, R. L. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. J. Exp. Med.219, e20211314 (2022). PubMed PMC

Linsley, P. S. & Ledbetter, J. A. The role of the CD28 receptor during T cell responses to antigen. Annu. Rev. Immunol.11, 191–212 (1993). PubMed

Linsley, P. S. et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity1, 793–801 (1994). PubMed

Pinto, B. F. et al. CD86 expression by monocytes influences an immunomodulatory profile in asymptomatic patients with chronic chagas disease. Front. Immunol.9, 454 (2018). PubMed PMC

Yanagawa, Y., Matsumoto, M. & Togashi, H. Enhanced dendritic cell antigen uptake via α2 adrenoceptor-mediated pi3k activation following brief exposure to noradrenaline. J. Immunol.185, 5762–5768 (2010). PubMed

Nijhuis L. E. et al. Adrenergic β2 receptor activation stimulates anti-inflammatory properties of dendritic cells in vitro. PLoS ONE22, e85086 (2014). PubMed PMC

Maestroni, G. J. M. & Mazzola, P. Langerhans cells β2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity. J. Neuroimmunol.144, 91–99 (2003). PubMed

Manni, M., Granstein, R. D. & Maestroni, G. β2-Adrenergic agonists bias TLR-2 and NOD2 activated dendritic cells towards inducing an IL-17 immune response. Cytokine55, 380–386 (2011). PubMed PMC

Mikocka-Walus, A., Ford, A. C. & Drossman, D. A. Antidepressants in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol.17, 184–192 (2020). PubMed

Ba, D. M. et al. Clinical outcomes associated with antidepressant use in inflammatory bowel disease patients and a matched control cohort. Sci. Rep.14, 1060 (2024). PubMed PMC

Turkin, A., Tuchina, O. & Klempin, F. Microglia function on precursor cells in the adult hippocampus and their responsiveness to serotonin signaling. Front. Cell Dev. Biol9, 665739 (2021). PubMed PMC

Albertini, G. et al. Serotonin sensing by microglia conditions the proper development of neuronal circuits and of social and adaptive skills. Mol. Psychiatry28, 2328–2342 (2023). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...