Persisting IL-18 levels after COVID-19 correlate with markers of cardiovascular inflammation reflecting potential risk of CVDs development
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
38404862
PubMed Central
PMC10884808
DOI
10.1016/j.heliyon.2024.e25938
PII: S2405-8440(24)01969-8
Knihovny.cz E-resources
- Keywords
- COVID-19, COVID-19 long-term consequences, CVDs, IL-18, Inflammation,
- Publication type
- Journal Article MeSH
COVID-19 manifestation is associated with a strong immune system activation leading to inflammation and subsequently affecting the cardiovascular system. The objective of the study was to reveal possible interconnection between prolongated inflammation and the development or exacerbation of long-term cardiovascular complications after COVID-19. We investigated correlations between humoral and cellular immune system markers together with markers of cardiovascular inflammation/dysfunction during COVID-19 onset and subsequent recovery. We analyzed 22 hospitalized patients with severe COVID-19 within three timepoints (acute, 1 and 6 months after COVID-19) in order to track the impact of COVID-19 on the long-term decline of the cardiovascular system fitness and eventual development of CVDs. Among the cytokines dysregulated during COVID-19 changes, we showed significant correlations of IL-18 as a key driver of several pathophysiological changes with markers of cardiovascular inflammation/dysfunction. Our findings established novel immune-related markers, which can be used for the stratification of patients at high risk of CVDs for further therapy.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Hematology and Blood Transfusion Prague Czech Republic
International Clinical Research Center Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
See more in PubMed
Wang D., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. Mar. 2020;323(11):1061. doi: 10.1001/jama.2020.1585. PubMed DOI PMC
Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. Apr. 2020;323(13):1239. doi: 10.1001/jama.2020.2648. PubMed DOI
Guo T., et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19) JAMA Cardiol. Jul. 2020;5(7):811. doi: 10.1001/jamacardio.2020.1017. PubMed DOI PMC
Kotecha T., et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur. Heart J. May 2021;42(19):1866–1878. doi: 10.1093/eurheartj/ehab075. PubMed DOI PMC
Bavishi C., Bonow R.O., Trivedi V., Abbott J.D., Messerli F.H., Bhatt D.L. Special Article - acute myocardial injury in patients hospitalized with COVID-19 infection: a review. Prog. Cardiovasc. Dis. Sep. 2020;63(5):682–689. doi: 10.1016/j.pcad.2020.05.013. PubMed DOI PMC
Moody W.E., et al. Persisting adverse ventricular remodeling in COVID-19 survivors: a longitudinal echocardiographic study. J. Am. Soc. Echocardiogr. May 2021;34(5):562–566. doi: 10.1016/j.echo.2021.01.020. PubMed DOI PMC
Sonnweber T., et al. Cardiopulmonary recovery after COVID-19: an observational prospective multicentre trial. Eur. Respir. J. Apr. 2021;57(4) doi: 10.1183/13993003.03481-2020. PubMed DOI PMC
Puntmann V.O., et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19) JAMA Cardiol. Nov. 2020;5(11):1265. doi: 10.1001/jamacardio.2020.3557. PubMed DOI PMC
Eiros R., et al. Pericardial and myocardial involvement after SARS-CoV-2 infection: a cross-sectional descriptive study in healthcare workers. Rev. Esp. Cardiol. Engl. Ed. Sep. 2022;75(9):734–746. doi: 10.1016/j.rec.2021.11.001. PubMed DOI PMC
Patoulias D., et al. Inflammatory markers in cardiovascular disease; lessons learned and future perspectives. Curr. Vasc. Pharmacol. Dec. 2020;19(3):323–342. doi: 10.2174/1570161118666200318104434. PubMed DOI
Anker S.D. Inflammatory mediators in chronic heart failure: an overview. Heart. Apr. 2004;90(4):464–470. doi: 10.1136/hrt.2002.007005. PubMed DOI PMC
Van Linthout S., Tschöpe C. Inflammation – cause or consequence of heart failure or both? Curr. Heart Fail. Rep. Aug. 2017;14(4):251–265. doi: 10.1007/s11897-017-0337-9. PubMed DOI PMC
Glezeva N., Baugh J.A. Role of inflammation in the pathogenesis of heart failure with preserved ejection fraction and its potential as a therapeutic target. Heart Fail. Rev. Sep. 2014;19(5):681–694. doi: 10.1007/s10741-013-9405-8. PubMed DOI
Khan S., Shafiei M.S., Longoria C., Schoggins J.W., Savani R.C., Zaki H. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife. Dec. 2021;10 doi: 10.7554/eLife.68563. PubMed DOI PMC
Zhao Y., et al. SARS-CoV-2 spike protein interacts with and activates TLR41. Cell Res. Jul. 2021;31(7):818–820. doi: 10.1038/s41422-021-00495-9. PubMed DOI PMC
Guan W., et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. Apr. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032. PubMed DOI PMC
Qin C., et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. Jul. 2020;71(15):762–768. doi: 10.1093/cid/ciaa248. PubMed DOI PMC
Yang L., Xie X., Tu Z., Fu J., Xu D., Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct. Targeted Ther. Jul. 2021;6(1):255. doi: 10.1038/s41392-021-00679-0. PubMed DOI PMC
Rajamanickam A., et al. Dynamic alterations in monocyte numbers, subset frequencies and activation markers in acute and convalescent COVID-19 individuals. Sci. Rep. Oct. 2021;11(1) doi: 10.1038/s41598-021-99705-y. PubMed DOI PMC
Gatti A., Radrizzani D., Viganò P., Mazzone A., Brando B. Decrease of non‐classical and intermediate monocyte subsets in severe acute SARS‐CoV ‐2 infection. Cytometry. Sep. 2020;97(9):887–890. doi: 10.1002/cyto.a.24188. PubMed DOI PMC
Hadjadj J., et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. Aug. 2020;369(6504):718–724. doi: 10.1126/science.abc6027. PubMed DOI PMC
Silvin A., et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell. Sep. 2020;182(6):1401. doi: 10.1016/j.cell.2020.08.002. 1418.e18. PubMed DOI PMC
Carissimo G., et al. Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nat. Commun. Oct. 2020;11(1):5243. doi: 10.1038/s41467-020-19080-6. PubMed DOI PMC
Peruzzi B., et al. Quantitative and qualitative alterations of circulating myeloid cells and plasmacytoid DC in SARS‐CoV‐2 infection. Immunology. Dec. 2020;161(4):345–353. doi: 10.1111/imm.13254. PubMed DOI PMC
Schulte-Schrepping J., et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell. Sep. 2020;182(6):1419–1440. doi: 10.1016/j.cell.2020.08.001. e23. PubMed DOI PMC
Bhaskar S., et al. Cytokine storm in COVID-19—immunopathological mechanisms, clinical considerations, and therapeutic approaches: the REPROGRAM consortium position paper. Front. Immunol. Jul. 2020;11:1648. doi: 10.3389/fimmu.2020.01648. PubMed DOI PMC
Blum A., Miller H. Pathophysiological role of cytokines in congestive heart failure. Annu. Rev. Med. Feb. 2001;52(1):15–27. doi: 10.1146/annurev.med.52.1.15. PubMed DOI
Williams J.W., Huang L., Randolph G.J. Cytokine circuits in cardiovascular disease. Immunity. Apr. 2019;50(4):941–954. doi: 10.1016/j.immuni.2019.03.007. PubMed DOI PMC
Liang S., et al. SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary inflammation via reduced mitophagy. Signal Transduct. Targeted Ther. Mar. 2023;8(1):108. doi: 10.1038/s41392-023-01368-w. PubMed DOI PMC
Saxena A., Russo I., Frangogiannis N.G. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Transl. Res. Jan. 2016;167(1):152–166. doi: 10.1016/j.trsl.2015.07.002. PubMed DOI PMC
Seta Y. Interleukin 18 in acute myocardial infarction. Heart. Dec. 2000;84(6):668–669. doi: 10.1136/heart.84.6.668. PubMed DOI PMC
Lyakh L., Trinchieri G., Provezza L., Carra G., Gerosa F. Regulation of interleukin‐12/interleukin‐23 production and the T‐helper 17 response in humans. Immunol. Rev. Dec. 2008;226(1):112–131. doi: 10.1111/j.1600-065X.2008.00700.x. PubMed DOI PMC
Zykov M.V., Barbarash O.L., Kashtalap V.V., Kutikhin A.G., Barbarash L.S. Interleukin-12 serum level has prognostic value in patients with ST-segment elevation myocardial infarction. Heart Lung. Jul. 2016;45(4):336–340. doi: 10.1016/j.hrtlng.2016.03.007. PubMed DOI
Abbas A., et al. Interleukin 23 levels are increased in carotid atherosclerosis: possible role for the interleukin 23/interleukin 17 Axis. Stroke. Mar. 2015;46(3):793–799. doi: 10.1161/STROKEAHA.114.006516. PubMed DOI
Li G., et al. Coronavirus infections and immune responses. J. Med. Virol. Apr. 2020;92(4):424–432. doi: 10.1002/jmv.25685. PubMed DOI PMC
The National Institute of Health Coronavirus Disease 2019 (COVID-19) treatment guidelines. 2024. http://www.covid19treatmentguidelines.nih.gov PubMed
Guo T., et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19) JAMA Cardiol. Jul. 2020;5(7):811. doi: 10.1001/jamacardio.2020.1017. PubMed DOI PMC
Lippi G., Plebani M. Cytokine ‘storm’, cytokine ‘breeze’, or both in COVID-19? Clin. Chem. Lab. Med. CCLM. Mar. 2021;59(4):637–639. doi: 10.1515/cclm-2020-1761. PubMed DOI
Jacobs L.M.C., et al. Biomarkers of sustained systemic inflammation and microvascular dysfunction associated with post-COVID-19 condition symptoms at 24 months after SARS-CoV-2-infection. Front. Immunol. Oct. 2023;14 doi: 10.3389/fimmu.2023.1182182. PubMed DOI PMC
Said E.A., et al. Defining IL‐6 levels in healthy individuals: a meta‐analysis. J. Med. Virol. Jun. 2021;93(6):3915–3924. doi: 10.1002/jmv.26654. PubMed DOI
Imaoka H., et al. Interleukin-18 production and pulmonary function in COPD. Eur. Respir. J. Feb. 2008;31(2):287–297. doi: 10.1183/09031936.00019207. PubMed DOI
Dolinay T., et al. Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am. J. Respir. Crit. Care Med. Jun. 2012;185(11):1225–1234. doi: 10.1164/rccm.201201-0003OC. PubMed DOI PMC
Satış H., et al. Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine. Jan. 2021;137 doi: 10.1016/j.cyto.2020.155302. PubMed DOI PMC
Mallat Z., et al. Evidence for altered interleukin (IL)‐18 pathway in human heart failure. Faseb. J. Nov. 2004;18(14):1752–1754. doi: 10.1096/fj.04-2426fje. PubMed DOI
Suchanek H., et al. High serum interleukin-18 concentrations in patients with coronary artery disease and type 2 diabetes mellitus. Eur. Cytokine Netw. Sep. 2005;16(3):177–185. PubMed
Blankenberg S., et al. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation. Jul. 2002;106(1):24–30. doi: 10.1161/01.CIR.0000020546.30940.92. PubMed DOI
Formanowicz D., Wanic-Kossowska M., Pawliczak E., Radom M., Formanowicz P. Usefulness of serum interleukin-18 in predicting cardiovascular mortality in patients with chronic kidney disease – systems and clinical approach. Sci. Rep. Dec. 2015;5(1) doi: 10.1038/srep18332. PubMed DOI PMC
Nasser S.M.T., Rana A.A., Doffinger R., Kafizas A., Khan T.A., Nasser S. Elevated free interleukin-18 associated with severity and mortality in prospective cohort study of 206 hospitalised COVID-19 patients. Intensive Care Med. Exp. Feb. 2023;11(1):9. doi: 10.1186/s40635-022-00488-x. PubMed DOI PMC
Thukkani A.K., McHowat J., Hsu F.-F., Brennan M.-L., Hazen S.L., Ford D.A. Identification of α-chloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions. Circulation. Dec. 2003;108(25):3128–3133. doi: 10.1161/01.CIR.0000104564.01539.6A. PubMed DOI
Zhang R. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA. Nov. 2001;286(17):2136. doi: 10.1001/jama.286.17.2136. PubMed DOI
Abdel-Azeez H.A.-H., Al-Zaky M. Plasma osteopontin as a predictor of coronary artery disease: association with echocardiographic characteristics of atherosclerosis. J. Clin. Lab. Anal. 2010;24(3):201–206. doi: 10.1002/jcla.20378. PubMed DOI PMC
Korhonen E.A., et al. Tie1 controls angiopoietin function in vascular remodeling and inflammation. J. Clin. Invest. Aug. 2016;126(9):3495–3510. doi: 10.1172/JCI84923. PubMed DOI PMC
Augustin H.G., Young Koh G., Thurston G., Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nat. Rev. Mol. Cell Biol. Mar. 2009;10(3):165–177. doi: 10.1038/nrm2639. PubMed DOI
Savant S., et al. The orphan receptor Tie1 controls angiogenesis and vascular remodeling by differentially regulating Tie2 in tip and stalk cells. Cell Rep. Sep. 2015;12(11):1761–1773. doi: 10.1016/j.celrep.2015.08.024. PubMed DOI PMC
Huang C., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. Feb. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC
De Zuani M., et al. High CD4‐to‐CD8 ratio identifies an at‐risk population susceptible to lethal COVID‐19. Scand. J. Immunol. Mar. 2022;95(3) doi: 10.1111/sji.13125. PubMed DOI PMC
Du R.-H., et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur. Respir. J. May 2020;55(5) doi: 10.1183/13993003.00524-2020. PubMed DOI PMC
Sánchez-Cerrillo I., et al. COVID-19 severity associates with pulmonary redistribution of CD1c+ DCs and inflammatory transitional and nonclassical monocytes. J. Clin. Invest. Oct. 2020;130(12):6290–6300. doi: 10.1172/JCI140335. PubMed DOI PMC
Basso C., et al. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur. Heart J. Oct. 2020;41(39):3827–3835. doi: 10.1093/eurheartj/ehaa664. PubMed DOI PMC
Zhang L., et al. Cardiovascular risk after SARS-CoV-2 infection is mediated by IL18/IL18R1/HIF-1 signaling pathway Axis. Front. Immunol. Jan. 2022;12 doi: 10.3389/fimmu.2021.780804. PubMed DOI PMC
Zhao L., Varghese Z., Moorhead J.F., Chen Y., Ruan X.Z. CD36 and lipid metabolism in the evolution of atherosclerosis. Br. Med. Bull. Jun. 2018;126(1):101–112. doi: 10.1093/bmb/ldy006. PubMed DOI
Prescott H.C., Angus D.C. Enhancing recovery from sepsis: a review. JAMA. Jan. 2018;319(1):62. doi: 10.1001/jama.2017.17687. PubMed DOI PMC
Mostel Z., et al. Post-sepsis syndrome – an evolving entity that afflicts survivors of sepsis. Mol. Med. Dec. 2020;26(1):6. doi: 10.1186/s10020-019-0132-z. PubMed DOI PMC
Patel M., Uthman O. Risk factors for newly-developed cardiovascular disease and quality of life during the COVID − 19 pandemic: an analysis of the English longitudinal study of ageing. BMC Publ. Health. Jul. 2023;23(1):1294. doi: 10.1186/s12889-023-16135-3. PubMed DOI PMC
Lindner D., et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. Nov. 2020;5(11):1281. doi: 10.1001/jamacardio.2020.3551. PubMed DOI PMC
Gao Z., et al. Establishment and validation of the cut-off values of estimated glomerular filtration rate and urinary albumin-to-creatinine ratio for diabetic kidney disease: a multi-center, prospective cohort study. Front. Endocrinol. Dec. 2022;13 doi: 10.3389/fendo.2022.1064665. PubMed DOI PMC
Hjortebjerg R., et al. Insulin‐like growth factor binding protein 4 fragments provide incremental prognostic information on cardiovascular events in patients with ST‐segment elevation myocardial infarction. J. Am. Heart Assoc. Mar. 2017;6(3) doi: 10.1161/JAHA.116.005358. PubMed DOI PMC