Screening of Natural Compounds as P-Glycoprotein Inhibitors against Multidrug Resistance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LQ1605
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018131
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018121
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_026/000845
Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/1325/2020
Specific University Research Grant
720776
H2020 Leadership in Enabling and Industrial Technologies
814418
H2020 Leadership in Enabling and Industrial Technologies
LM2018140
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33808505
PubMed Central
PMC8066904
DOI
10.3390/biomedicines9040357
PII: biomedicines9040357
Knihovny.cz E-zdroje
- Klíčová slova
- P-glycoprotein, flavonoids, molecular docking, molecular dynamics, multidrug resistance, natural compounds, structure-based virtual screening,
- Publikační typ
- časopisecké články MeSH
Multidrug resistance (MDR) is a common problem when fighting cancer with chemotherapy. P-glycoprotein (P-gp, or MDR1) is an active pump responsible for the efflux of xenobiotics out of the cell, including anti-cancer drugs. It is a validated target against MDR. No crystal structure of the human P-gp is available to date, and only recently several cryo-EM structures have been solved. In this paper, we present a comprehensive computational approach that includes constructing the full-length three-dimensional structure of the human P-gp and its refinement using molecular dynamics. We assessed its flexibility and conformational diversity, compiling a dynamical ensemble that was used to dock a set of lignan compounds, previously reported as active P-gp inhibitors, and disclose their binding modes. Based on the statistical analysis of the docking results, we selected a system for performing the structure-based virtual screening of new potential P-gp inhibitors. We tested the method on a library of 87 natural flavonoids described in the literature, and 10 of those were experimentally assayed. The results reproduced the theoretical predictions only partially due to various possible factors. However, at least two of the predicted natural flavonoids were demonstrated to be effective P-gp inhibitors. They were able to increase the accumulation of doxorubicin inside the human promyelocytic leukemia HL60/MDR cells overexpressing P-gp and potentiate the antiproliferative activity of this anti-cancer drug.
Zobrazit více v PubMed
Ohnuma S., Ambudkar S.V. Discovering Natural Product Modulators to Overcome Multidrug Resistance in Cancer Chemotherapy. Curr. Pharm. Biotechnol. 2011;12:609–620. doi: 10.2174/138920111795163887. PubMed DOI PMC
Aller S.G., Yu J., Ward A., Weng Y., Chittaboina S., Zhuo R., Harrell P.M., Trinh Y.T., Zhang Q., Urbatsch I.L., et al. Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding. Science. 2009;323:1718–1722. doi: 10.1126/science.1168750. PubMed DOI PMC
Velingkar V.S., Dandekar V.D. Modulation of P-Glycoprotein Mediated Multidrug Resistance (MDR) in Cancer Using Chemosensitizers. Int. J. Pharma Sci. Res. 2010;1:104–111.
Dai Y., Zhang F., Chen N., Wang G., Jia S., Zheng H. Proceedings of the the 2nd International Conference on Information Science and Engineering. Institute of Electrical and Electronics Engineers; Wuhan, China: 2010. Analysis of P-glycoprotein structure and binding sites; pp. 101–103. DOI
Dallavalle S., Dobričić V., Lazzarato L., Gazzano E., Machuqueiro M., Pajeva I., Tsakovska I., Zidar N., Fruttero R. Improvement of Conventional Anti-cancer Drugs as New Tools against Multidrug Resistant Tumors. Drug Resist. Updat. 2020;50:100682. doi: 10.1016/j.drup.2020.100682. PubMed DOI
Rees D.C., Johnson E., Lewinson O. ABC Transporters: The Power to Change. Nat. Rev. Mol. Cell Biol. 2009;10:218–227. doi: 10.1038/nrm2646. PubMed DOI PMC
Li W., Zhang H., Assaraf Y.G., Zhao K., Xu X., Xie J., Yang D.-H., Chen Z.-S. Overcoming ABC Transporter-Mediated Multidrug Resistance: Molecular Mechanisms and Novel Therapeutic Drug Strategies. Drug Resist. Updat. 2016;27:14–29. doi: 10.1016/j.drup.2016.05.001. PubMed DOI
Shapiro A.B., Ling V. Positively Cooperative Sites for Drug Transport by P-Glycoprotein with Distinct Drug Specificities. JBIC J. Biol. Inorg. Chem. 1997;250:130–137. doi: 10.1111/j.1432-1033.1997.00130.x. PubMed DOI
Ferreira R.J., Ferreira M.-J.U., Dos Santos D.J.V.A. Molecular Docking Characterizes Substrate-Binding Sites and Efflux Modulation Mechanisms within P-Glycoprotein. J. Chem. Inf. Model. 2013;53:1747–1760. doi: 10.1021/ci400195v. PubMed DOI
Ward A.A., Szewczyk P.P., Grimard V., Lee C.-W., Martinez L.L., Doshi R.R., Caya A.A., Villaluz M.M., Pardon E.E., Cregger C.C., et al. Structures of P-Glycoprotein Reveal Its Conformational Flexibility and an Epitope on the NucleotiDe-binding Domain. Proc. Natl. Acad. Sci. USA. 2013;110:13386–13391. doi: 10.1073/pnas.1309275110. PubMed DOI PMC
Kim Y., Chen J. Molecular Structure of Human P-Glycoprotein in the ATP-Bound, Outward-Facing Conformation. Science. 2018;359:915–919. doi: 10.1126/science.aar7389. PubMed DOI
Zhang Y., Gong W., Wang Y., Liu Y., Li C. Exploring Movement and Energy in Human P-Glycoprotein Conformational Rearrangement. J. Biomol. Struct. Dyn. 2018;37:1104–1119. doi: 10.1080/07391102.2018.1461133. PubMed DOI
Alam A., Kowal J., Broude E., Roninson I., Locher K.P. Structural Insight into Substrate and Inhibitor Discrimination by Human P-Glycoprotein. Science. 2019;363:753–756. doi: 10.1126/science.aav7102. PubMed DOI PMC
Kodan A., Yamaguchi T., Nakatsu T., Matsuoka K., Kimura Y., Ueda K., Kato H. Inward-and Outward-Facing X-ray Crystal Structures of Homodimeric P-Glycoprotein CmABCB1. Nat. Commun. 2019;10:1–12. doi: 10.1038/s41467-018-08007-x. PubMed DOI PMC
Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055. PubMed DOI
Morris M.E., Zhang S. Flavonoid–Drug Interactions: Effects of Flavonoids on ABC Transporters. Life Sci. 2006;78:2116–2130. doi: 10.1016/j.lfs.2005.12.003. PubMed DOI
Carlson B.A., Dubay M.M., Sausville E.A., Brizuela L., Worland P.J. Flavopiridol Induces G1 Arrest with Inhibition of Cy-clin-Dependent Kinase (CDK) 2 and CDK4 in Human Breast Carcinoma Cells. Cancer Res. 1996;56:2973–2978. PubMed
Raj N.K., Sripal R.M., Chaluvadi M.R., Krishna D.R. Bioflavonoids Classification, Pharmacological, Biochemical Effects and Therapeutic Potential. Ind. J. Pharmacol. 2001;33:2.
Di Pietro A., Dumontet C., Barron D. Recent Advances in the Discovery of Flavonoids and Analogs with High-Affinity Binding to P-Glycoprotein Responsible for Cancer Cell Multidrug Resistance. Med. Res. Rev. 2002;22:512–529. doi: 10.1002/med.10015. PubMed DOI
Brezani V., Smejkal K., Hosek J., Tomasova V. Anti-inflammatory Natural Prenylated Phenolic Compounds—Potential Lead Substances. Curr. Med. Chem. 2018;25:1094–1159. doi: 10.2174/0929867324666170810161157. PubMed DOI
Schneiderová K., Šmejkal K. Phytochemical profile of Paulownia tomentosa (Thunb). Steud. Phytochem. Rev. 2014;14:799–833. doi: 10.1007/s11101-014-9376-y. PubMed DOI PMC
Molčanová L., Janošíková D., Dall’acqua S., Šmejkal K. C-Prenylated Flavonoids with Potential Cytotoxic Activity against Solid Tumor Cell Lines. Phytochem. Rev. 2019;18:1051–1100. doi: 10.1007/s11101-019-09641-z. DOI
Šmejkal K. Cytotoxic Potential of C-prenylated Flavonoids. Phytochem. Rev. 2014;13:245–275. doi: 10.1007/s11101-013-9308-2. DOI
Slanina J., Páchniková G., Čarnecká M., Koubíková L.P., Adámková L., Humpa O., Šmejkal K., Slaninová I. Identification of Key Structural Characteristics of Schisandra chinensis Lignans Involved in P-Glycoprotein Inhibition. J. Nat. Prod. 2014;77:2255–2263. doi: 10.1021/np500521v. PubMed DOI
Domicevica L., Biggin P.C. Homology Modelling of Human P-glycoprotein. Biochem. Soc. Trans. 2015;43:952–958. doi: 10.1042/BST20150125. PubMed DOI
Bonito C.A., Ferreira R.J., Ferreira M.-J.U., Gillet J.-P., Cordeiro M.N.D.S., Dos Santos D.J.V.A. Theoretical Insights on Helix Repacking as the Origin of P-Glycoprotein Promiscuity. Sci. Rep. 2020;10:1–13. doi: 10.1038/s41598-020-66587-5. PubMed DOI PMC
Condic-Jurkic K., Subramanian N., Mark A.E., O’Mara M.L. The Reliability of Molecular Dynamics Simulations of the Multidrug Transporter P-glycoprotein in a Membrane Environment. PLoS ONE. 2018;13:e0191882. doi: 10.1371/journal.pone.0191882. PubMed DOI PMC
Shityakov S., Förster C. In Silico Structure-Based Screening of Versatile P-Glycoprotein Inhibitors Using Polynomial Empirical Scoring Functions. Adv. Appl. Bioinform. Chem. 2014;7:1–9. doi: 10.2147/AABC.S56046. PubMed DOI PMC
Yang M., Chen J., Shi X., Xu L., Xi Z., You L., An R., Wang X. Development of in Silico Models for Predicting P-Glycoprotein Inhibitors Based on a Two-Step Approach for Feature Selection and Its Application to Chinese Herbal Medicine Screening. Mol. Pharm. 2015;12:3691–3713. doi: 10.1021/acs.molpharmaceut.5b00465. PubMed DOI
Ngo T.-D., Tran T.-D., Le M.-T., Thai K.-M. Computational Predictive Models for P-Glycoprotein Inhibition of in-House Chalcone Derivatives and Drug-Bank Compounds. Mol. Divers. 2016;20:945–961. doi: 10.1007/s11030-016-9688-5. PubMed DOI
Wongrattanakamon P., Lee V.S., Nimmanpipug P., Sirithunyalug B., Chansakaow S., Jiranusornkul S. Insight into the Molecular Mechanism of P-Glycoprotein Mediated Drug Toxicity Induced by Bioflavonoids: An Integrated Computational Approach. Toxicol. Mech. Methods. 2017;5:1–19. doi: 10.1080/15376516.2016.1273428. PubMed DOI
Wongrattanakamon P., Nimmanpipug P., Sirithunyalug B., Chansakaow S., Jiranusornkul S. A Significant Mechanism of Molecular Recognition between Bioflavonoids and P-Glycoprotein Leading to Herb-Drug Interactions. Toxicol. Mech. Methods. 2017;28:1–11. doi: 10.1080/15376516.2017.1351506. PubMed DOI
Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J., Sayers E.W. GenBank. Nucleic Acids Res. 2012;41:D36–D42. doi: 10.1093/nar/gks1195. PubMed DOI PMC
Chen C.-J., Chin J.E., Ueda K., Clark D.P., Pastan I., Gottesman M.M., Roninson I.B. Internal Duplication and Homology with Bacterial Transport Proteins in the mdr1 (P-glycoprotein) Gene from Multidrug-Resistant Human Cells. Cell. 1986;47:381–389. doi: 10.1016/0092-8674(86)90595-7. PubMed DOI
Zhang Y. I-TASSER Server for Protein 3D Structure Prediction. BMC Bioinform. 2008;9:1–8. doi: 10.1186/1471-2105-9-40. PubMed DOI PMC
Roy A., Kucukural A., Zhang Y. I-TASSER: A Unified Platform for Automated Protein Structure and Function Prediction. Nat. Protoc. 2010;5:725–738. doi: 10.1038/nprot.2010.5. PubMed DOI PMC
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC
Arnold K., Bordoli L., Kopp J., Schwede T. The SWISS-MODEL Workspace: A Web-Based Environment for Protein Structure Homology Modelling. Bioinformatics. 2005;22:195–201. doi: 10.1093/bioinformatics/bti770. PubMed DOI
Zhang Y., Skolnick J. Scoring Function for Automated Assessment of Protein Structure Template Quality. Proteins Struct. Funct. Bioinform. 2004;57:702–710. doi: 10.1002/prot.20264. PubMed DOI
Pontius J., Richelle J., Wodak S.J. Deviations from Standard Atomic Volumes as a Quality Measure for Protein Crystal Structures. J. Mol. Biol. 1996;264:121–136. doi: 10.1006/jmbi.1996.0628. PubMed DOI
Colovos C., Yeates T.O. Verification of Protein Structures: Patterns of Nonbonded Atomic Interactions. Protein Sci. 1993;2:1511–1519. doi: 10.1002/pro.5560020916. PubMed DOI PMC
Eisenberg D., Lüthy R., Bowie J.U. VERIFY3D: Assessment of Protein Models with Three-Dimensional Profiles. Methods Enzymol. 1997;277:396–404. doi: 10.1016/s0076-6879(97)77022-8. PubMed DOI
Benkert P., Biasini M., Schwede T. Toward the Estimation of the Absolute Quality of Individual Protein Structure Models. Bioinformatics. 2010;27:343–350. doi: 10.1093/bioinformatics/btq662. PubMed DOI PMC
Chen V.B., Arendall W.B., Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C. MolProbity: All-Atom Structure Validation for Macromolecular Crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC
Lovell S.C., Davis I.W., Arendall W.B., De Bakker P.I.W., Word J.M., Prisant M.G., Richardson J.S., Richardson D.C. Structure Validation by Cα Geometry: ϕ,ψ and Cβ Deviation. Proteins Struct. Funct. Bioinform. 2003;50:437–450. doi: 10.1002/prot.10286. PubMed DOI
The PyMOL Molecular Graphics System, Version 2.3.2. Schrödinger, LLC; New York, NY, USA: 2019.
Gordon J.C., Myers J.B., Folta T., Shoja V., Heath L.S., Onufriev A. H++: A Server for Estimating pKas and Adding Missing Hydrogens to Macromolecules. Nucleic Acids Res. 2005;33:W368–W371. doi: 10.1093/nar/gki464. PubMed DOI PMC
Case D.A., Babin V., Berryman J.T., Betz R.M., Cai Q., Cerutti S., Cheatham T.E., III, Darden T.A., Duke R.E., Gohlke H., et al. AMBER 14. University of California; San Francisco, CA, USA: 2014.
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Götz A.W., Williamson M.J., Xu D., Poole D., Le Grand S., Walker R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 2012;8:1542–1555. doi: 10.1021/ct200909j. PubMed DOI PMC
Le Grand S., Götz A.W., Walker R.C. SPFP: Speed without Compromise—A Mixed Precision Model for GPU Accelerated Molecular Dynamics Simulations. Comput. Phys. Commun. 2013;184:374–380. doi: 10.1016/j.cpc.2012.09.022. DOI
Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K.E., Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015;11:3696–3713. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Darden T., York D., Pedersen L. Particle Mesh Ewald: An N⋅log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI
Ryckaert J.-P., Ciccotti G., Berendsen H.J.C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI
Lomize M.A., Pogozheva I.D., Joo H., Mosberg H.I., Lomize A.L. OPM Database and PPM Web Server: Resources for Positioning of Proteins in Membranes. Nucleic Acids Res. 2011;40:D370–D376. doi: 10.1093/nar/gkr703. PubMed DOI PMC
Roe D.R., Cheatham I.T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013;9:3084–3095. doi: 10.1021/ct400341p. PubMed DOI
Humphrey W., Dalke A., Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Chemin. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC
Rappe A.K., Casewit C.J., Colwell K.S., Goddard W.A., Skiff W.M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992;114:10024–10035. doi: 10.1021/ja00051a040. DOI
Jakalian A., Bush B.L., Jack D.B., Bayly C.I. Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: I. Method. J. Comput. Chem. 2000;21:132–146. doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P. PubMed DOI
Jakalian A., Jack D.B., Bayly C.I. Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 2002;23:1623–1641. doi: 10.1002/jcc.10128. PubMed DOI
Sanner M.F. Python: A Programming Language for Software Integration and Development. J. Mol. Graph. Model. 1999;17:57–61. PubMed
Trott O., Olson A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Koes D.R., Baumgartner M.P., Camacho C.J. Lessons Learned in Empirical Scoring with Smina from the CSAR 2011 Benchmarking Exercise. J. Chem. Inf. Model. 2013;53:1893–1904. doi: 10.1021/ci300604z. PubMed DOI PMC
Durrant J.D., McCammon J.A. NNScore 2.0: A Neural-Network Receptor–Ligand Scoring Function. J. Chem. Inf. Model. 2011;51:2897–2903. doi: 10.1021/ci2003889. PubMed DOI PMC
Wójcikowski M., Ballester P.J., Siedlecki P. Performance of Machine-Learning Scoring Functions in Structure-Based Virtual Screening. Sci. Rep. 2017;7:srep46710. doi: 10.1038/srep46710. PubMed DOI PMC
Hanáková Z., Hošek J., Babula P., Dall’Acqua S., Václavík J., Šmejkal K. C-Geranylated Flavanones from Paulownia tomentosa Fruits as Potential Anti-inflammatory Compounds Acting via Inhibition of TNF-α Production. J. Nat. Prod. 2015;78:850–863. doi: 10.1021/acs.jnatprod.5b00005. PubMed DOI
Šmejkal K., Babula P., Šlapetová T., Brognara E., Dall’Acqua S., Žemlička M., Innocenti G., Cvačka J. Cytotoxic Activity of C-Geranyl Compounds from Paulownia tomentosa Fruits. Planta Med. 2008;74:1488–1491. doi: 10.1055/s-2008-1081339. PubMed DOI
Šmejkal K., Grycová L., Marek R., Lemière F., Jankovská D., Forejtníková H., Vančo J., Suchý V. C-Geranyl Compounds from Paulownia tomentosa Fruits. J. Nat. Prod. 2007;70:1244–1248. doi: 10.1021/np070063w. PubMed DOI
Ferreira R.J., Ferreira M.-J.U., Dos Santos D.J.V.A. Insights on P-Glycoprotein’s Efflux Mechanism Obtained by Molecular Dynamics Simulations. J. Chem. Theory Comput. 2012;8:1853–1864. doi: 10.1021/ct300083m. PubMed DOI
Hošek J., Bartos M., Chudík S., Dall’Acqua S., Innocenti G., Kartal M., Kokoška L., Kollár P., Kutil Z., Landa P., et al. Natural Compound Cudraflavone B Shows Promising Anti-inflammatory Properties In Vitro. J. Nat. Prod. 2011;74:614–619. doi: 10.1021/np100638h. PubMed DOI
Argyropoulou A., Aligiannis N., Trougakos I.P., Skaltsounis A.-L. Natural Compounds with Anti-ageing Activity. Nat. Prod. Rep. 2013;30:1412–1437. doi: 10.1039/c3np70031c. PubMed DOI
Navrátilová A., Nešuta O., Vančatová I., Čížek A., Varela-M R.E., López-Abán J., Villa-Pulgarin J.A., Mollinedo F., Muro A., Žemličková H., et al. C-Geranylated Flavonoids from Paulownia tomentosa fruits with Antimicrobial Potential and Synergistic Activity with Antibiotics. Pharm. Biol. 2016;54:1398–1407. doi: 10.3109/13880209.2015.1103755. PubMed DOI
Hanáková Z., Hošek J., Kutil Z., Temml V., Landa P., Vaněk T., Schuster D., Dall’Acqua S., Cvačka J., Polanský O., et al. Anti-inflammatory Activity of Natural Geranylated Flavonoids: Cyclooxygenase and Lipoxygenase Inhibitory Properties and Proteomic Analysis. J. Nat. Prod. 2017;80:999–1006. doi: 10.1021/acs.jnatprod.6b01011. PubMed DOI
Ferreira A., Santos A.O., Falcão A., Alves G. In Vitro Screening of Dual Flavonoid Combinations for Reversing P-glycoprotein-Mediated Multidrug Resistance: Focus on Antiepileptic Drugs. Food Chem. Toxicol. 2018;111:84–93. doi: 10.1016/j.fct.2017.11.004. PubMed DOI
Li J., Duan B., Guo Y., Zhou R., Sun J., Bie B., Yang S., Huang C., Yang J., Li Z. Baicalein Sensitizes Hepatocellular Carcinoma Cells to 5-FU and Epirubicin by Activating Apoptosis and Ameliorating P-glycoprotein Activity. Biomed. Pharmacother. 2018;98:806–812. doi: 10.1016/j.biopha.2018.01.002. PubMed DOI
Latest Global Cancer Data: Cancer Burden Rises to 18.1 Million New Cases and 9.6 Million Cancer Deaths in 2018. Int. Agency Res. Cancer. 2018;263:1–3.
Dong J., Qin Z., Zhang W.-D., Cheng G., Yehuda A.G., Ashby C.R., Chen Z.-S., Cheng X.-D., Qin J.-J. Medicinal Chemistry Strategies to Discover P-glycoprotein Inhibitors: An Update. Drug Resist. Updat. 2020;49:100681. doi: 10.1016/j.drup.2020.100681. PubMed DOI
Sato T., Kodan A., Kimura Y., Ueda K., Nakatsu T., Kato H. Functional Role of the Linker Region in Purified Human P-glycoprotein. FEBS J. 2009;276:3504–3516. doi: 10.1111/j.1742-4658.2009.07072.x. PubMed DOI
Huang M., Jin J., Sun H., Liu G.T. Reversal of P-glycoprotein-mediated Multidrug Resistance of Cancer Cells by Five Schizandrins Isolated from the Chinese Herb Fructus schizandrae. Cancer Chemother. Pharmacol. 2008;62:1015–1026. doi: 10.1007/s00280-008-0691-0. PubMed DOI
Pan Q., Lu Q., Zhang K., Hu X. Dibenzocyclooctadiene lingnans: A Class of Novel Inhibitors of P-glycoprotein. Cancer Chemother. Pharmacol. 2005;58:99–106. doi: 10.1007/s00280-005-0133-1. PubMed DOI
Slaninova I., Březinová L., Koubíková L., Slanina J. Dibenzocyclooctadiene lignans Overcome Drug Resistance in Lung Cancer Cells—Study of Structure–Activity Relationship. Toxicol. Vitr. 2009;23:1047–1054. doi: 10.1016/j.tiv.2009.06.008. PubMed DOI
Šmejkal K., Svačinová J., Šlapetová T., Schneiderová K., Dall’Acqua S., Innocenti G., Závalová V., Kollár P., Chudík S., Marek R., et al. Cytotoxic Activities of Several Geranyl-Substituted Flavanones. J. Nat. Prod. 2010;73:568–572. doi: 10.1021/np900681y. PubMed DOI
Kitagawa S., Nabekura T., Takahashi T., Nakamura Y., Sakamoto H., Tano H., Hirai M., Tsukahara G. Structure-Activity Relationships of the Inhibitory Effects of Flavonoids on P-Glycoprotein-Mediated Transport in KB-C2 Cells. Biol. Pharm. Bull. 2005;28:2274–2278. doi: 10.1248/bpb.28.2274. PubMed DOI
Yang J., Liu R.H. Synergistic Effect of Apple Extracts and Quercetin 3-β-d-Glucoside Combination on Antiproliferative Activity in MCF-7 Human Breast Cancer Cells in Vitro. J. Agric. Food Chem. 2009;57:8581–8586. doi: 10.1021/jf8039796. PubMed DOI
Xu S., Yu J., Zhan J., Yang L., Guo L., Xu Y. Pharmacokinetics, Tissue Distribution, and Metabolism Study of Icariin in Rat. BioMed Res. Int. 2017;2017:1–17. doi: 10.1155/2017/4684962. PubMed DOI PMC
Kim H.J., Yim S.-H., Han F., Kang B.Y., Choi H.J., Jung D.-W., Williams D.R., Gustafson K.R., Kennelly E.J., Lee I.-S. Biotransformed Metabolites of the Hop Prenylflavanone Isoxanthohumol. Molecules. 2019;24:394. doi: 10.3390/molecules24030394. PubMed DOI PMC