Engineering PD-1-targeted small protein variants for in vitro diagnostics and in vivo PET imaging
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NU21-03-00372
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
38711085
PubMed Central
PMC11071268
DOI
10.1186/s12967-024-05210-x
PII: 10.1186/s12967-024-05210-x
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer diagnostic, Combinatorial library, Immune checkpoint, Non-small cell lung cancer, Programmed cell death 1, Protein engineering,
- MeSH
- antigeny CD279 * metabolismus MeSH
- HEK293 buňky MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory plic diagnostické zobrazování patologie metabolismus genetika MeSH
- nemalobuněčný karcinom plic diagnostické zobrazování patologie metabolismus MeSH
- pozitronová emisní tomografie * metody MeSH
- proteinové inženýrství * MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD279 * MeSH
- PDCD1 protein, human MeSH Prohlížeč
BACKGROUND: Programmed cell death 1 (PD-1) belongs to immune checkpoint proteins ensuring negative regulation of the immune response. In non-small cell lung cancer (NSCLC), the sensitivity to treatment with anti-PD-1 therapeutics, and its efficacy, mostly correlated with the increase of tumor infiltrating PD-1+ lymphocytes. Due to solid tumor heterogeneity of PD-1+ populations, novel low molecular weight anti-PD-1 high-affinity diagnostic probes can increase the reliability of expression profiling of PD-1+ tumor infiltrating lymphocytes (TILs) in tumor tissue biopsies and in vivo mapping efficiency using immune-PET imaging. METHODS: We designed a 13 kDa β-sheet Myomedin scaffold combinatorial library by randomization of 12 mutable residues, and in combination with ribosome display, we identified anti-PD-1 Myomedin variants (MBA ligands) that specifically bound to human and murine PD-1-transfected HEK293T cells and human SUP-T1 cells spontaneously overexpressing cell surface PD-1. RESULTS: Binding affinity to cell-surface expressed human and murine PD-1 on transfected HEK293T cells was measured by fluorescence with LigandTracer and resulted in the selection of most promising variants MBA066 (hPD-1 KD = 6.9 nM; mPD-1 KD = 40.5 nM), MBA197 (hPD-1 KD = 29.7 nM; mPD-1 KD = 21.4 nM) and MBA414 (hPD-1 KD = 8.6 nM; mPD-1 KD = 2.4 nM). The potential of MBA proteins for imaging of PD-1+ populations in vivo was demonstrated using deferoxamine-conjugated MBA labeled with 68Galium isotope. Radiochemical purity of 68Ga-MBA proteins reached values 94.7-99.3% and in vitro stability in human serum after 120 min was in the range 94.6-98.2%. The distribution of 68Ga-MBA proteins in mice was monitored using whole-body positron emission tomography combined with computerized tomography (PET/CT) imaging up to 90 min post-injection and post mortem examined in 12 mouse organs. The specificity of MBA proteins was proven by co-staining frozen sections of human tonsils and NSCLC tissue biopsies with anti-PD-1 antibody, and demonstrated their potential for mapping PD-1+ populations in solid tumors. CONCLUSIONS: Using directed evolution, we developed a unique set of small binding proteins that can improve PD-1 diagnostics in vitro as well as in vivo using PET/CT imaging.
Zobrazit více v PubMed
Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018;18(2):91–104. doi: 10.1038/nri.2017.112. PubMed DOI PMC
Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492–499. doi: 10.1038/ni.2035. PubMed DOI
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264. doi: 10.1038/nrc3239. PubMed DOI PMC
He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30(8):660–669. doi: 10.1038/s41422-020-0343-4. PubMed DOI PMC
Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of Pd-1, a novel member of the immunoglobulin gene superfamily. Upon Programmed Cell-Death Embo J. 1992;11(11):3887–3895. PubMed PMC
Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18(3):153–167. doi: 10.1038/nri.2017.108. PubMed DOI
Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173(2):945–954. doi: 10.4049/jimmunol.173.2.945. PubMed DOI
Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–12297. doi: 10.1073/pnas.192461099. PubMed DOI PMC
Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–687. doi: 10.1038/nature04444. PubMed DOI
Antonia SJ, Kim SW, Spira AI, Ahn MJ, Ou SHI, Stjepanovic N, Fasolo A, Jagert D, Ottt PA, Wainberg ZA, et al. Safety and clinical activity of durvalumab (MEDI4736), an anti-PD-L1 antibody, in treatment-naive patients with advanced non small-cell lung cancer. J Clin Oncol. 2016;34(15):9029. doi: 10.1200/JCO.2016.34.15_suppl.9029. DOI
Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 2015;373(17):1627–1639. doi: 10.1056/NEJMoa1507643. PubMed DOI PMC
Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–2532. doi: 10.1056/NEJMoa1503093. PubMed DOI
Brahmer JR, Tykodi SS, Chow LQM, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–2465. doi: 10.1056/NEJMoa1200694. PubMed DOI PMC
Maute RL, Gordon SR, Mayer AT, McCracken MN, Natarajan A, Ring NG, Kimura R, Tsai JM, Manglik A, Kruse AC, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci USA. 2015;112(47):E6506–6514. doi: 10.1073/pnas.1519623112. PubMed DOI PMC
Nishi W, Wakamatsu E, Machiyama H, Matsushima R, Saito K, Yoshida Y, Nishikawa T, Takehara T, Toyota H, Furuhata M, et al. Evaluation of therapeutic PD-1 antibodies by an advanced single-molecule imaging system detecting human PD-1 microclusters. Nat Commun. 2023;14(1):3157. doi: 10.1038/s41467-023-38512-7. PubMed DOI PMC
Ninomiya K, Hotta K. Pembrolizumab for the first-line treatment of non-small cell lung cancer. Expert Opin Biol Th. 2018;18(10):1015–1021. doi: 10.1080/14712598.2018.1522300. PubMed DOI
Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377(20):1919–1929. doi: 10.1056/NEJMoa1709937. PubMed DOI
Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–265. doi: 10.1016/S0140-6736(16)32517-X. PubMed DOI PMC
Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–135. doi: 10.1056/NEJMoa1504627. PubMed DOI PMC
Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, Miller JP, Bassett RL, Gopalakrishnan V, Wani K, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6(8):827–837. doi: 10.1158/2159-8290.CD-15-1545. PubMed DOI PMC
Camidge DR, Doebele RC, Kerr KM. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol. 2019;16(6):341–355. doi: 10.1038/s41571-019-0173-9. PubMed DOI
Hummelink K, van der Noort V, Muller M, Schouten RD, Lalezari F, Peters D, Theelen WSME, Koelzer VH, Mertz KD, Zippelius A, et al. PD-1T TILs as a predictive biomarker for clinical benefit to PD-1 blockade in patients with advanced NSCLC. Clin Cancer Res. 2022;28(22):4893–4906. doi: 10.1158/1078-0432.CCR-22-0992. PubMed DOI PMC
Uryvaev A, Passhak M, Hershkovits D, Sabo E, Bar-Sela G. The role of tumor-infiltrating lymphocytes (TILs) as a predictive biomarker of response to anti-PD1 therapy in patients with metastatic non-small cell lung cancer or metastatic melanoma. Med Oncol. 2018;35(3):25. doi: 10.1007/s12032-018-1080-0. PubMed DOI
Kaira K, Yamaguchi O, Kawasaki T, Hashimoto K, Miura Y, Shiono A, Mouri A, Imai H, Kobayashi K, Yasuda M, et al. Prognostic significance of tumor infiltrating lymphocytes on first-line pembrolizumab efficacy in advanced non-small cell lung cancer. Discov Oncol. 2023;14(1):6. doi: 10.1007/s12672-023-00615-4. PubMed DOI PMC
Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen G, Boellaard R, Du S, Hayes W, Smith R, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun. 2018;9(1):4664. doi: 10.1038/s41467-018-07131-y. PubMed DOI PMC
Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576–588. doi: 10.1002/psp4.12224. PubMed DOI PMC
Lee CM, Tannock IF. The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer. 2010;10:255. doi: 10.1186/1471-2407-10-255. PubMed DOI PMC
Wu F, Fan J, He Y, Xiong A, Yu J, Li Y, Zhang Y, Zhao W, Zhou F, Li W, et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat Commun. 2021;12(1):2540. doi: 10.1038/s41467-021-22801-0. PubMed DOI PMC
Karamitopoulou-Diamantis E, Andreou A, Perren A, Gloor B. Spatial immunoarchitectural intra-tumor heterogeneity is associated with early tumor recurrence in pancreatic cancer. Lab Invest. 2021;101(Suppl 1):1047–1048.
Francis DM, Thomas SN. Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Adv Drug Deliv Rev. 2017;114:33–42. doi: 10.1016/j.addr.2017.04.011. PubMed DOI PMC
Deng R, Bumbaca D, Pastuskovas CV, Boswell CA, West D, Cowan KJ, Chiu H, McBride J, Johnson C, Xin Y, et al. Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. Mabs-Austin. 2016;8(3):593–603. doi: 10.1080/19420862.2015.1136043. PubMed DOI PMC
Pinotsis N, Chatziefthimiou SD, Berkemeier F, Beuron F, Mavridis IM, Konarev PV, Svergun DI, Morris E, Rief M, Wilmanns M. Superhelical architecture of the myosin filament-linking protein myomesin with unusual elastic properties. PLoS Biol. 2012;10(2):e1001261. doi: 10.1371/journal.pbio.1001261. PubMed DOI PMC
Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33(Web Server issue):W382–388. doi: 10.1093/nar/gki387. PubMed DOI PMC
Kuchar M, Kosztyu P, Liskova VD, Cerny J, Petrokova H, Vroblova E, Maly M, Vankova L, Krupka M, Kafkova LR, et al. Myomedin scaffold variants targeted to 10E8 HIV-1 broadly neutralizing antibody mimic gp41 epitope and elicit HIV-1 virus-neutralizing sera in mice. Virulence. 2021;12(1):1271–1287. doi: 10.1080/21505594.2021.1920251. PubMed DOI PMC
Sali A, Blundell TL. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Vajda S. How good is automated protein docking? Proteins. 2013;81(12):2159–2166. doi: 10.1002/prot.24403. PubMed DOI PMC
Kozakov D, Brenke R, Comeau SR, Vajda S. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins. 2006;65(2):392–406. doi: 10.1002/prot.21117. PubMed DOI
Daniel Liskova V, Kosztyu P, Kuchar M, Cerny J, Bharadwaj S, Petrokova H, Vroblova E, Krupka M, Maly M, Zosincukova T, et al. Myomedin replicas of gp120 V3 loop glycan epitopes recognized by PGT121 and PGT126 antibodies as non-cognate antigens for stimulation of HIV-1 broadly neutralizing antibodies. Front Immunol. 2022;13:1066361. doi: 10.3389/fimmu.2022.1066361. PubMed DOI PMC
UniProt C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC
Islam S, Vick E, Huber B, Morales C, Spier C, Cooke L, Weterings E, Mahadevan D. Co-targeting aurora kinase with PD-L1 and PI3K abrogates immune checkpoint mediated proliferation in peripheral T-cell lymphoma: a novel therapeutic strategy. Oncotarget. 2017;8(59):100326–100338. doi: 10.18632/oncotarget.22222. PubMed DOI PMC
Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, Rosenberg SA. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114(8):1537–1544. doi: 10.1182/blood-2008-12-195792. PubMed DOI PMC
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727–742. PubMed PMC
Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306. doi: 10.1038/nrc3245. PubMed DOI
Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20(11):662–680. doi: 10.1038/s41568-020-0285-7. PubMed DOI
Pages F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C, Lugli A, Zlobec I, Rau TT, Berger MD, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018;391(10135):2128–2139. doi: 10.1016/S0140-6736(18)30789-X. PubMed DOI
Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19(3):133–150. doi: 10.1038/s41568-019-0116-x. PubMed DOI PMC
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568. doi: 10.1038/nature13954. PubMed DOI PMC
Richards DA. Exploring alternative antibody scaffolds: antibody fragments and antibody mimics for targeted drug delivery. Drug Discov Today Technol. 2018;30:35–46. doi: 10.1016/j.ddtec.2018.10.005. PubMed DOI
Vazquez-Lombardi R, Phan TG, Zimmermann C, Lowe D, Jermutus L, Christ D. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov Today. 2015;20(10):1271–1283. doi: 10.1016/j.drudis.2015.09.004. PubMed DOI
Son S, Park J, Seo H, Lee HT, Heo YS, Kim HS. A small-sized protein binder specific for human PD-1 effectively suppresses the tumour growth in tumour mouse model. J Drug Target. 2020;28(4):419–427. doi: 10.1080/1061186X.2019.1669042. PubMed DOI
Bryan CM, Rocklin GJ, Bick MJ, Ford A, Majri-Morrison S, Kroll AV, Miller CJ, Carter L, Goreshnik I, Kang A, et al. Computational design of a synthetic PD-1 agonist. Proc Natl Acad Sci U S A. 2021;118(29):e2102164118. doi: 10.1073/pnas.2102164118. PubMed DOI PMC
Liang Z, Tian Y, Cai W, Weng Z, Li Y, Zhang H, Bao Y, Li Y. High-affinity human PD-L1 variants attenuate the suppression of T cell activation. Oncotarget. 2017;8(51):88360–88375. doi: 10.18632/oncotarget.21729. PubMed DOI PMC
Lin X, Lu X, Luo G, Xiang H. Progress in PD-1/PD-L1 pathway inhibitors: from biomacromolecules to small molecules. Eur J Med Chem. 2020;186:111876. doi: 10.1016/j.ejmech.2019.111876. PubMed DOI
Wu Q, Jiang L, Li SC, He QJ, Yang B, Cao J. Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway. Acta Pharmacol Sin. 2021;42(1):1–9. doi: 10.1038/s41401-020-0366-x. PubMed DOI PMC
Cheng X, Veverka V, Radhakrishnan A, Waters LC, Muskett FW, Morgan SH, Huo J, Yu C, Evans EJ, Leslie AJ, et al. Structure and interactions of the human programmed cell death 1 receptor. J Biol Chem. 2013;288(17):11771–11785. doi: 10.1074/jbc.M112.448126. PubMed DOI PMC
Tang S, Kim PS. A high-affinity human PD-1/PD-L2 complex informs avenues for small-molecule immune checkpoint drug discovery. Proc Natl Acad Sci U S A. 2019;116(49):24500–24506. doi: 10.1073/pnas.1916916116. PubMed DOI PMC
Lin DY, Tanaka Y, Iwasaki M, Gittis AG, Su HP, Mikami B, Okazaki T, Honjo T, Minato N, Garboczi DN. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc Natl Acad Sci USA. 2008;105(8):3011–3016. doi: 10.1073/pnas.0712278105. PubMed DOI PMC
Latchman Y, Wood C, Chemova T, Iwai Y, Malenkovich N, Long A, Bourque K, Boussiotis V, Nishimura H, Honjo T, et al. PD-L2, a novel B7 homologue, is a second ligand for PD-1 and inhibits T cell activation. Faseb J. 2001;15(4):A345–A345.
Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–1034. doi: 10.1084/jem.192.7.1027. PubMed DOI PMC
Zhang X, Schwartz JC, Guo X, Bhatia S, Cao E, Lorenz M, Cammer M, Chen L, Zhang ZY, Edidin MA, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity. 2004;20(3):337–347. doi: 10.1016/S1074-7613(04)00051-2. PubMed DOI
Said EA, Dupuy FP, Trautmann L, Zhang Y, Shi Y, El-Far M, Hill BJ, Noto A, Ancuta P, Peretz Y, et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat Med. 2010;16(4):452–459. doi: 10.1038/nm.2106. PubMed DOI PMC
Bally AP, Lu P, Tang Y, Austin JW, Scharer CD, Ahmed R, Boss JM. NF-κB regulates PD-1 expression in macrophages. J Immunol. 2015;194(9):4545–4554. doi: 10.4049/jimmunol.1402550. PubMed DOI PMC
Wen BY, Zhao L, Wang YC, Qiu CN, Xu ZM, Huang KL, Zhu H, Li ZM, Li HJ. Nanobodies targeting the interaction interface of programmed death receptor 1 (PD-1)/PD-1 ligand 1 (PD-1/PD-L1) Prep Biochem Biotech. 2020;50(3):252–259. doi: 10.1080/10826068.2019.1692217. PubMed DOI
Miyazaki T, Aoki W, Koike N, Sato T, Ueda M. Application of peptide barcoding to obtain high-affinity anti-PD-1 nanobodies. J Biosci Bioeng. 2023;136(3):173–181. doi: 10.1016/j.jbiosc.2023.07.002. PubMed DOI
Zhang Y, Yang S, Jiang D, Li Y, Ma S, Wang L, Li G, Wang H, Zhang A, Xu G. Screening and identification of an anti-PD-1 nanobody with antitumor activity. Biosci Rep. 2022;43(1):BSR20221546. doi: 10.1042/BSR20221546. PubMed DOI PMC
Ding ZQ, Sun SY, Wang X, Yang XM, Shi W, Huang XN, Xie SX, Mo FZ, Hou XQ, Liu AQ, et al. Nanobody-based trispecific T cell engager (Nb-TriTE) enhances therapeutic efficacy by overcoming tumor-mediated immunosuppression. J Hematol Oncol. 2023;16(1):115. doi: 10.1186/s13045-023-01507-4. PubMed DOI PMC
Kosztyu P, Kuchar M, Cerny J, Barkocziova L, Maly M, Petrokova H, Czernekova L, Liskova V, Raskova Kafkova L, Knotigova P, et al. Proteins mimicking epitope of HIV-1 virus neutralizing antibody induce virus-neutralizing sera in mice. EBioMedicine. 2019;47:247–256. doi: 10.1016/j.ebiom.2019.07.015. PubMed DOI PMC
Smejkal J, Maly P, Kuchar M, Panova N, Semeradtova A, Aubrecht P, Stofik M, Maly J. Cell immunocapture microfluidic chip based on high-affinity recombinant protein binders. Biosens Bioelectron. 2021;172:112784. doi: 10.1016/j.bios.2020.112784. PubMed DOI
Frejd FY, Kim KT. Affibody molecules as engineered protein drugs. Exp Mol Med. 2017;49:e306. doi: 10.1038/emm.2017.35. PubMed DOI PMC