Myomedin replicas of gp120 V3 loop glycan epitopes recognized by PGT121 and PGT126 antibodies as non-cognate antigens for stimulation of HIV-1 broadly neutralizing antibodies

. 2022 ; 13 () : 1066361. [epub] 20221208

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36569830

INTRODUCTION: Imprinting broadly neutralizing antibody (bNAb) paratopes by shape complementary protein mimotopes represents a potential alternative for developing vaccine immunogens. This approach, designated as a Non-Cognate Ligand Strategy (NCLS), has recently been used for the identification of protein variants mimicking CD4 binding region epitope or membrane proximal external region (MPER) epitope of HIV-1 envelope (Env) glycoprotein. However, the potential of small binding proteins to mimic viral glycan-containing epitopes has not yet been verified. METHODS: In this work, we employed a highly complex combinatorial Myomedin scaffold library to identify variants recognizing paratopes of super candidate bNAbs, PGT121 and PGT126, specific for HIV-1 V3 loop epitopes. RESULTS: In the collection of Myomedins called MLD variants targeted to PGT121, three candidates competed with gp120 for binding to this bNAb in ELISA, thus suggesting an overlapping binding site and epitope-mimicking potential. Myomedins targeted to PGT126 designated MLB also provided variants that competed with gp120. Immunization of mice with MLB or MLD binders resulted in the production of anti-gp120 and -Env serum antibodies. Mouse hyper-immune sera elicited with MLB036, MLB041, MLB049, and MLD108 moderately neutralized 8-to-10 of 22 tested HIV-1-pseudotyped viruses of A, B, and C clades in vitro. DISCUSSION: Our data demonstrate that Myomedin-derived variants can mimic particular V3 glycan epitopes of prominent anti-HIV-1 bNAbs, ascertain the potential of particular glycans controlling neutralizing sensitivity of individual HIV-1 pseudoviruses, and represent promising prophylactic candidates for HIV-1 vaccine development.

Zobrazit více v PubMed

Wainhobson S. The fastest genome evolution ever described - hiv variation in-situ . Curr Opin Genet Dev (1993) 3:878–83. doi: 10.1016/0959-437X(93)90008-D PubMed DOI

Rambaut A, Posada D, Crandall KA, Holmes EC. The causes and consequences of HIV evolution. Nat Rev Genet (2004) 5:52–61. doi: 10.1038/nrg1246 PubMed DOI

Robertson DL, Anderson JP, Bradac JA, Carr JK, Foley B, Funkhouser RK, et al. . HIV-1 nomenclature proposal. Science (2000) 288:55–6. doi: 10.1126/science.288.5463.55d PubMed DOI

Plantier JC, Leoz M, Dickerson JE, De Oliveira F, Cordonnier F, Lemee V, et al. . A new human immunodeficiency virus derived from gorillas. Nat Med (2009) 15:871–2. doi: 10.1038/nm.2016 PubMed DOI

Vallari A, Holzmayer V, Harris B, Yamaguchi J, Ngansop C, Makamche F, et al. . Confirmation of putative HIV-1 group p in Cameroon. J Virol (2011) 85:1403–7. doi: 10.1128/JVI.02005-10 PubMed DOI PMC

Garcia-Knight MA, Slyker J, Payne BL, Pond SL, De Silva TI, Chohan B, et al. . Viral evolution and cytotoxic T cell restricted selection in acute infant HIV-1 infection. Sci Rep (2016) 6:29536. doi: 10.1038/srep29536 PubMed DOI PMC

Zhu X, Borchers C, Bienstock RJ, Tomer KB. Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in CHO cells. Biochemistry (2000) 39:11194–204. doi: 10.1021/bi000432m PubMed DOI

Mathys L, Balzarini J. The role of n-glycans of HIV-1 gp41 in virus infectivity and susceptibility to the suppressive effects of carbohydrate-binding agents. Retrovirology (2014) 11:107. doi: 10.1186/s12977-014-0107-7 PubMed DOI PMC

Julien JP, Cupo A, Sok D, Stanfield RL, Lyumkis D, Deller MC, et al. . Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science (2013) 342:1477–83. doi: 10.1126/science.1245625 PubMed DOI PMC

Zhang M, Gaschen B, Blay W, Foley B, Haigwood N, Kuiken C, et al. . Tracking global patterns of n-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology (2004) 14:1229–46. doi: 10.1093/glycob/cwh106 PubMed DOI

Tomaras GD, Yates NL, Liu P, Qin L, Fouda GG, Chavez LL, et al. . Initial b-cell responses to transmitted human immunodeficiency virus type 1: Virion-binding immunoglobulin m (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J Virol (2008) 82:12449–63. doi: 10.1128/JVI.01708-08 PubMed DOI PMC

Legrand E, Pellegrin I, Neau D, Pellegrin JL, Ragnaud JM, Dupon M, et al. . Course of specific T lymphocyte cytotoxicity, plasma and cellular viral loads, and neutralizing antibody titers in 17 recently seroconverted HIV type 1-infected patients. AIDS Res Hum Retroviruses (1997) 13:1383–94. doi: 10.1089/aid.1997.13.1383 PubMed DOI

Overbaugh J, Morris L. The antibody response against HIV-1. Cold Spring Harb Perspect Med (2012) 2:a007039. doi: 10.1101/cshperspect.a007039 PubMed DOI PMC

Zolla-Pazner S, Cardozo T. Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design. Nat Rev Immunol (2010) 10:527–35. doi: 10.1038/nri2801 PubMed DOI PMC

Cardozo T, Kimura T, Philpott S, Weiser B, Burger H, Zolla-Pazner S. Structural basis for coreceptor selectivity by the HIV type 1 V3 loop. AIDS Res Hum Retroviruses (2007) 23:415–26. doi: 10.1089/aid.2006.0130 PubMed DOI

Cao J, Sullivan N, Desjardin E, Parolin C, Robinson J, Wyatt R, et al. . Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein. J Virol (1997) 71:9808–12. doi: 10.1128/jvi.71.12.9808-9812.1997 PubMed DOI PMC

Davis KL, Bibollet-Ruche F, Li H, Decker JM, Kutsch O, Morris L, et al. . Human immunodeficiency virus type 2 (HIV-2)/HIV-1 envelope chimeras detect high titers of broadly reactive HIV-1 V3-specific antibodies in human plasma. J Virol (2009) 83:1240–59. doi: 10.1128/JVI.01743-08 PubMed DOI PMC

Jiang X, Burke V, Totrov M, Williams C, Cardozo T, Gorny MK, et al. . Conserved structural elements in the V3 crown of HIV-1 gp120. Nat Struct Mol Biol (2010) 17:955–61. doi: 10.1038/nsmb.1861 PubMed DOI

Pritchard LK, Vasiljevic S, Ozorowski G, Seabright GE, Cupo A, Ringe R, et al. . Structural constraints determine the glycosylation of HIV-1 envelope trimers. Cell Rep (2015) 11:1604–13. doi: 10.1016/j.celrep.2015.05.017 PubMed DOI PMC

Bonomelli C, Doores KJ, Dunlop DC, Thaney V, Dwek RA, Burton DR, et al. . The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PloS One (2011) 6(8):e23521. doi: 10.1371/journal.pone.0023521 PubMed DOI PMC

Coss KP, Vasiljevic S, Pritchard LK, Krumm SA, Glaze M, Madzorera S, et al. . HIV-1 glycan density drives the persistence of the mannose patch within an infected individual. J Virol (2016) 90:11132–44. doi: 10.1128/JVI.01542-16 PubMed DOI PMC

Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N, et al. . Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol (1996) 70:1100–8. doi: 10.1128/jvi.70.2.1100-1108.1996 PubMed DOI PMC

Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, et al. . Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature (2011) 477:466–70. doi: 10.1038/nature10373 PubMed DOI PMC

Kosztyu P, Kuchar M, Cerny J, Barkocziova L, Maly M, Petrokova H, et al. . Proteins mimicking epitope of HIV-1 virus neutralizing antibody induce virus-neutralizing sera in mice. EBioMedicine (2019) 47:247–56. doi: 10.1016/j.ebiom.2019.07.015 PubMed DOI PMC

Klasse PJ. Non-cognate ligands of procrustean paratopes as potential vaccine components. Ebiomedicine (2019) 47:6–7. doi: 10.1016/j.ebiom.2019.07.040 PubMed DOI PMC

Kuchar M, Kosztyu P, Daniel Liskova V, Cerny J, Petrokova H, Vroblova E, et al. . Myomedin scaffold variants targeted to 10E8 HIV-1 broadly neutralizing antibody mimic gp41 epitope and elicit HIV-1 virus-neutralizing sera in mice. Virulence (2021) 12:1271–87. doi: 10.1080/21505594.2021.1920251 PubMed DOI PMC

Raska M, Moldoveanu Z, Novak J, Hel Z, Novak L, Bozja J, et al. . Delivery of DNA HIV-1 vaccine to the liver induces high and long-lasting humoral immune responses. Vaccine (2008) 26:1541–51. doi: 10.1016/j.vaccine.2008.01.035 PubMed DOI PMC

Raska M, Takahashi K, Czernekova L, Zachova K, Hall S, Moldoveanu Z, et al. . Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J Biol Chem (2010) 285:20860–9. doi: 10.1074/jbc.M109.085472 PubMed DOI PMC

Raska M, Czernekova L, Moldoveanu Z, Zachova K, Elliott MC, Novak Z, et al. . Differential glycosylation of envelope gp120 is associated with differential recognition of HIV-1 by virus-specific antibodies and cell infection. AIDS Res Ther (2014) 11:23. doi: 10.1186/1742-6405-11-23 PubMed DOI PMC

Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol (1993) 234:779–815. doi: 10.1006/jmbi.1993.1626 PubMed DOI

Pinotsis N, Chatziefthimiou SD, Berkemeier F, Beuron F, Mavridis IM, Konarev PV, et al. . Superhelical architecture of the myosin filament-linking protein myomesin with unusual elastic properties. PloS Biol (2012) 10:e1001261. doi: 10.1371/journal.pbio.1001261 PubMed DOI PMC

Mouquet H, Scharf L, Euler Z, Liu Y, Eden C, Scheid JF, et al. . Complex-type n-glycan recognition by potent broadly neutralizing HIV antibodies. Proc Natl Acad Sci USA (2012) 109:E3268–3277. doi: 10.1073/pnas.1217207109 PubMed DOI PMC

Garces F, Lee JH, De Val N, de la Pena AT, Kong L, Puchades C, et al. . Affinity maturation of a potent family of HIV antibodies is primarily focused on accommodating or avoiding glycans. Immunity (2015) 43:1053–63. doi: 10.1016/j.immuni.2015.11.007 PubMed DOI PMC

Lee JH, De Val N, Lyumkis D, Ward AB. Model building and refinement of a natively glycosylated HIV-1 env protein by high-resolution cryoelectron microscopy. Structure (2015) 23:1943–51. doi: 10.1016/j.str.2015.07.020 PubMed DOI PMC

Kozakov D, Brenke R, Comeau SR, Vajda S. PIPER: An FFT-based protein docking program with pairwise potentials. Proteins (2006) 65:392–406. doi: 10.1002/prot.21117 PubMed DOI

Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, et al. . How good is automated protein docking? Proteins (2013) 81:2159–66. doi: 10.1002/prot.24403 PubMed DOI PMC

Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PloS Biol (2010) 8:e1000412. doi: 10.1002/0471142735.im1211s64 PubMed DOI PMC

Montefiori DC. Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays. Curr Protoc Immunol (2005) 12. doi: 10.1016/j.chom.2018.12.001 PubMed DOI

Garces F, Sok D, Kong L, Mcbride R, Kim HJ, Saye-Francisco KF, et al. . Structural evolution of glycan recognition by a family of potent HIV antibodies. Cell (2014) 159:69–79. doi: 10.1016/j.cell.2014.09.009 PubMed DOI PMC

Lee JH, Ozorowski G, Ward AB. Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science (2016) 351:1043–8. doi: 10.1126/science.aad2450 PubMed DOI PMC

Ozorowski G, Pallesen J, De Val N, Lyumkis D, Cottrell CA, Torres JL, et al. . Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature (2017) 547:360–3. doi: 10.1038/nature23010 PubMed DOI PMC

Zolla-Pazner S. Improving on nature: Focusing the immune response on the V3 loop. Hum Antibodies (2005) 14:69–72. doi: 10.3233/HAB-2005-143-403 PubMed DOI

Hessell AJ, Mcburney S, Pandey S, Sutton W, Liu L, Li LZ, et al. . Induction of neutralizing antibodies in rhesus macaques using V3 mimotope peptides. Vaccine (2016) 34:2713–21. doi: 10.1016/j.vaccine.2016.04.027 PubMed DOI PMC

Barnes CO, Gristick HB, Freund NT, Escolano A, Lyubimov AY, Hartweger H, et al. . Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nat Commun (2018) 9:1251. doi: 10.1038/s41467-018-03632-y PubMed DOI PMC

Pejchal R, Doores KJ, Walker LM, Khayat R, Huang PS, Wang SK, et al. . A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science (2011) 334:1097–103. doi: 10.1126/science.1213256 PubMed DOI PMC

Sok D, Doores KJ, Briney B, Le KM, Saye-Francisco KL, Ramos A, et al. . Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci Trans Med (2014) 6(236):236ra63 doi: 10.1126/scitranslmed.3008104 PubMed DOI PMC

Moore PL, Gray ES, Wibmer CK, Bhiman JN, Nonyane M, Sheward DJ, et al. . Evolution of an HIV glycan-dependent broadly neutralizing antibody epitope through immune escape. Nat Med (2012) 18:1688. doi: 10.1038/nm.2985 PubMed DOI PMC

Krumm SA, Mohammed H, Le KM, Crispin M, Wrin T, Poignard P, et al. . Mechanisms of escape from the PGT128 family of anti-HIV broadly neutralizing antibodies. Retrovirology (2016) 13:8. doi: 10.1186/s12977-016-0241-5 PubMed DOI PMC

Doores KJ, Kong L, Krumm SA, Le KM, Sok D, Laserson U, et al. . Two classes of broadly neutralizing antibodies within a single lineage directed to the high-mannose patch of HIV envelope. J Virol (2015) 89:6525–5. doi: 10.1128/JVI.00593-15 PubMed DOI PMC

Cai H, Zhang RS, Orwenyo J, Giddens J, Yang Q, Labranche CC, et al. . Synthetic HIV V3 glycopeptide immunogen carrying a N334 n-glycan induces glycan-dependent antibodies with promiscuous site recognition. J Med Chem (2018) 61:10116–25. doi: 10.1021/acs.jmedchem.8b01290 PubMed DOI PMC

Lyumkis D, Julien JP, De Val N, Cupo A, Potter CS, Klasse PJ, et al. . Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science (2013) 342:1484–90. doi: 10.1126/science.1245627 PubMed DOI PMC

Li Y, Cleveland B, Klots I, Travis B, Richardson BA, Anderson D, et al. . Removal of a single n-linked glycan in human immunodeficiency virus type 1 gp120 results in an enhanced ability to induce neutralizing antibody responses. J Virol (2008) 82:638–51. doi: 10.1128/JVI.01691-07 PubMed DOI PMC

Zolla-Pazner S, Cohen SS, Boyd D, Kong XP, Seaman M, Nussenzweig M, et al. . Structure/Function studies involving the V3 region of the HIV-1 envelope delineate multiple factors that affect neutralization sensitivity. J Virol (2016) 90:636–49. doi: 10.1128/JVI.01645-15 PubMed DOI PMC

Moyo T, Ferreira RC, Davids R, Sonday Z, Moore PL, Travers SA, et al. . Chinks in the armor of the HIV-1 envelope glycan shield: Implications for immune escape from anti-glycan broadly neutralizing antibodies. Virology (2017) 501:12–24. doi: 10.1016/j.virol.2016.10.026 PubMed DOI

Goo L, Jalalian-Lechak Z, Richardson BA, Overbaugh J. A combination of broadly neutralizing HIV-1 monoclonal antibodies targeting distinct epitopes effectively neutralizes variants found in early infection. J Virol (2012) 86:10857–61. doi: 10.1128/JVI.01414-12 PubMed DOI PMC

Bricault CA, Yusim K, Seaman MS, Yoon H, Theiler J, Giorgi EE, et al. . HIV-1 neutralizing antibody signatures and application to epitope-targeted vaccine design. Cell Host Microbe (2019) 25:59–72.e58. doi: 10.1016/j.chom.2018.12.001 PubMed DOI PMC

van Regenmortel MHV. What does it mean to develop an HIV vaccine by rational design? Arch Virol (2021) 166:27–33. doi: 10.1007/s00705-020-04884-0 PubMed DOI

Wagh K, Bhattacharya T, Williamson C, Robles A, Bayne M, Garrity J, et al. . Optimal combinations of broadly neutralizing antibodies for prevention and treatment of HIV-1 clade c infection. PloS Pathog (2016) 12:e1005520. doi: 10.1371/journal.ppat.1005520 PubMed DOI PMC

Gautam R, Nishimura Y, Pegu A, Nason MC, Klein F, Gazumyan A, et al. . A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature (2016) 533:105. doi: 10.1038/nature17677 PubMed DOI PMC

Klein F, Halper-Stromberg A, Horwitz JA, Gruell H, Scheid JF, Bournazos S, et al. . HIV Therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature (2012) 492:118. doi: 10.1038/nature11604 PubMed DOI PMC

Klein F, Nogueira L, Nishimura Y, Phad G, West AP, Halper-Stromberg A, et al. . Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants. J Exp Med (2014) 211:2361–72. doi: 10.1084/jem.20141050 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace