Myomedin scaffold variants targeted to 10E8 HIV-1 broadly neutralizing antibody mimic gp41 epitope and elicit HIV-1 virus-neutralizing sera in mice

. 2021 Dec ; 12 (1) : 1271-1287.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33993840

One of the proposed strategies for the development of a more efficient HIV-1 vaccine is based on the identification of proteins binding to a paratope of chosen broadly neutralizing antibody (bNAb) that will mimic cognate HIV-1 Env (glyco)protein epitope and could be used as potent immunogens for induction of protective virus-neutralizing antibodies in the immunized individuals. To verify this "non-cognate ligand" concept, we developed a highly complex combinatorial library designed on a scaffold of human myomesin-1 protein domain and selected proteins called Myomedins specifically binding to variable regions of HIV-1 broadly neutralizing antibody 10E8. Immunization of mice with these Myomedin variants elicited the production of HIV-1 Env-specific antibodies. Hyperimmune sera bound to Env pseudotyped viruses and weakly/moderately neutralized 54% of tested clade A, B, C, and AE pseudotyped viruses variants in vitro. These results demonstrate that Myomedin variants have the potential to mimic Env epitopes and could be used as potential HIV-1 vaccine components.

Zobrazit více v PubMed

West AP Jr., Scharf L, Scheid JF, et al. Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell. 2014. February 13;156(4):633–648. PubMed PMC

Burton DR, Hangartner L.. Broadly neutralizing antibodies to HIV and their role in vaccine design. In: Littman DR, Yokoyama WM, editors. Annual review of immunology. Vol. 34. 2016. pp. 635–659. PubMed PMC

Moore PL. The neutralizing antibody response to the HIV-1 env protein. Curr HIV Res. 2018;16(1):21–28. PubMed PMC

Schoofs T, Barnes CO, Suh-Toma N, et al. Broad and potent neutralizing antibodies recognize the silent face of the HIV envelope. Immunity. 2019. June 18;50(6):1513–1529 e9. PubMed PMC

Klasse PJ, LaBranche CC, Ketas TJ, et al. Sequential and simultaneous immunization of rabbits with HIV-1 envelope glycoprotein SOSIP.664 trimers from clades A, B and C. PLoS Pathog. 2016. September;12(9):9. PubMed PMC

Sok D, Burton DR. Recent progress in broadly neutralizing antibodies to HIV. Nat Immunol. 2018. November;19(11):1179–1188. PubMed PMC

Lee JH, Andrabi R, Su CY, et al. A broadly neutralizing antibody targets the dynamic HIV envelope trimer apex via a long, rigidified, and anionic beta-hairpin structure. Immunity. 2017. April 18;46(4):690–702. PubMed PMC

McGuire AT, Hoot S, Dreyer AM, et al. Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies. J Exp Med. 2013. April 08;210(4):655–663. PubMed PMC

Escolano A, Gristick HB, Abernathy ME, et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 2019. June;570(7762):468–473. PubMed PMC

Steichen JM, Lin YC, Havenar-Daughton C, et al. A generalized HIV vaccine design strategy for priming of broadly neutralizing antibody responses. Science. 2019. December 6;366(6470):6470. PubMed PMC

Pejchal R, Doores KJ, Walker LM, et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science. 2011. November 25;334(6059):1097–1103. PubMed PMC

Behrens A-J, Vasiljevic S, Pritchard LK, et al. Composition and antigenic effects of individual glycan sites of a trimeric HIV-1 envelope glycoprotein. Cell Rep. 2016. March 22;14(11):2695–2706. PubMed PMC

Escolano A, Steichen JM, Dosenovic P, et al. Sequential immunization elicits broadly neutralizing anti-HIV-1 antibodies in ig knockin mice. Cell. 2016. September 8;166(6):1445–+. PubMed PMC

Steichen JM, Kulp DW, Tokatlian T, et al. HIV vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. Immunity. 2016. September 20;45(3):483–496. PubMed PMC

Bricault CA, Kovacs JM, Badamchi-Zadeh A, et al. Neutralizing antibody responses following long-term vaccination with HIV-1 Env gp140 in guinea pigs. J Virol. 2018. July 1;92(13):13. PubMed PMC

Banerjee K, Michael E, Eggink D, et al. Occluding the mannose moieties on human immunodeficiency virus type 1 gp120 with griffithsin improves the antibody responses to both proteins in Mice. AIDS Res Hum Retroviruses. 2012. February;28(2):206–214. PubMed PMC

Banerjee K, Andjelic S, Klasse PJ, et al. Enzymatic removal of mannose moieties can increase the immune response to HIV-1 gp120 in vivo. Virology. 2009. Jun-Jul;389(1–2):108–121. . PubMed PMC

Raska M, Moldoveanu Z, Novak J, et al. Delivery of DNA HIV-1 vaccine to the liver induces high and long-lasting humoral immune responses. Vaccine. 2008. March 17;26(12):1541–1551. PubMed PMC

Pugach P, Ozorowski G, Cupo A, et al. A native-like SOSIP.664 trimer based on an HIV-1 subtype B env Gene. J Virol. 2015. March;89(6):3380–3395. PubMed PMC

Raska M, Takahashi K, Czernekova L, et al. Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J Biol Chem. 2010. July 2;285(27):20860–20869. PubMed PMC

Kosztyu P, Kuchar M, Cerny J, et al. Proteins mimicking epitope of HIV-1 virus neutralizing antibody induce virus-neutralizing sera in mice. EBioMedicine. 2019. September;47:247–256. PubMed PMC

Ahmad JN, Li J, Biedermannova L, et al. Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein G. Proteins. 2012. March;80(3):774–789. PubMed

Kuchar M, Vankova L, Petrokova H, et al. Human interleukin-23 receptor antagonists derived from an albumin-binding domain scaffold inhibit IL-23-dependent ex vivo expansion of IL-17-producing T-cells. Proteins. 2014. June;82(6):975–989. PubMed PMC

Mareckova L, Petrokova H, Osicka R, et al. Novel binders derived from an albumin-binding domain scaffold targeting human prostate secretory protein 94 (PSP94). Protein Cell. 2015. October;6(10):774–779. PubMed PMC

Klasse PJ. Non-cognate ligands of Procrustean paratopes as potential vaccine components. EBioMedicine. 2019. September;47:6–7. PubMed PMC

Nelson JD, Brunel FM, Jensen R, et al. An affinity-enhanced neutralizing antibody against the membrane-proximal external region of human immunodeficiency virus type 1 gp41 recognizes an epitope between those of 2F5 and 4E10. J Virol. 2007. April;81(8):4033–4043. PubMed PMC

Kwong PD, Mascola JR, Nabel GJ. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nat Rev Immunol. 2013. September;13(9):693–701. PubMed

Flemming J, Wiesen L, Herschhorn A. Conformation-dependent interactions between HIV-1 envelope glycoproteins and broadly neutralizing antibodies. AIDS Res Hum Retroviruses. 2018. September;34(9):794–803. PubMed

Wang Q, Finzi A, Sodroski J. The conformational states of the HIV-1 envelope glycoproteins. Trends Microbiol. 2020. August;28(8):655–667. PubMed PMC

Krizova L, Kuchar M, Petrokova H, et al. p19-targeted ABD-derived protein variants inhibit IL-23 binding and exert suppressive control over IL-23-stimulated expansion of primary human IL-17+ T-cells. Autoimmunity. 2017. March;50(2):102–113. PubMed

Hlavnickova M, Kuchar M, Osicka R, et al. ABD-derived protein blockers of human IL-17 receptor A as non-IgG alternatives for modulation of IL-17-dependent pro-inflammatory axis. Int J Mol Sci. 2018. October 9;19(10):10. PubMed PMC

Petrokova H, Masek J, Kuchar M, et al. Targeting human thrombus by liposomes modified with anti-fibrin protein binders. Pharmaceutics. 2019. December 2;11(12):12. PubMed PMC

Kabsch W. Xds. Acta Crystallogr., Sect D-Biol Crystallog. 2010. February;66(2):125–132. PubMed PMC

Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr., Sect D-Biol Crystallog. 2010. January;66(1):22–25. PubMed

Pinotsis N, Chatziefthimiou SD, Berkemeier F, et al. Superhelical architecture of the myosin filament-linking protein myomesin with unusual elastic properties. PLoS Biol. 2012. February;10(2):e1001261. PubMed PMC

Emsley P, Lohkamp B, Scott WG, et al. Features and development of Coot. Acta Crystallogr., Sect D-Biol Crystallog. 2010. April;66(4):486–501. PubMed PMC

Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D. 1997. May 1;53(3):240–255. PubMed

Painter J, Merritt EA. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr D. 2006. April;62(4):439–450. PubMed

Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993. December 5;234(3):779–815. PubMed

Irimia A, Serra AM, Sarkar A, et al. Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: insights for vaccine and therapeutic design. PLoS Pathog. 2017. February;13(2):e1006212. PubMed PMC

Huang J, Ofek G, Laub L, et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature. 2012. November 15;491(7424):406–412. PubMed PMC

Kozakov D, Beglov D, Bohnuud T, et al. How good is automated protein docking? Proteins. 2013. December;81(12):2159–2166. PubMed PMC

Kozakov D, Brenke R, Comeau SR, et al. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins. 2006. November 1;65(2):392–406. PubMed

Kilkenny C, Browne WJ, Cuthill IC, et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010. June 29;8(6):e1000412. PubMed PMC

Montefiori DC. Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays. Curr Protoc Immunol. 2005. January;12(12 11). DOI:10.1002/0471142735.im1211s64. PubMed DOI

Schymkowitz J, Borg J, Stricher F, et al. The FoldX web server: an online force field. Nucleic Acids Res. 2005. July 1;33:W382–8. PubMed PMC

UniProt C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019. January 8;47(D1):D506–D515. PubMed PMC

Bricault CA, Yusim K, Seaman MS, et al. HIV-1 neutralizing antibody signatures and application to epitope-targeted vaccine design. Cell Host Microbe. 2019. January 9;25(1):59–72 e8. PubMed PMC

Harris AK, Bartesaghi A, Milne JL, et al. HIV-1 envelope glycoprotein trimers display open quaternary conformation when bound to the gp41 membrane-proximal external-region-directed broadly neutralizing antibody Z13e1. J Virol. 2013. June;87(12):7191–7196. PubMed PMC

Rathinakumar R, Dutta M, Zhu P, et al. Binding of anti-membrane-proximal gp41 monoclonal antibodies to CD4-liganded and -unliganded human immunodeficiency virus type 1 and simian immunodeficiency virus virions. J Virol. 2012. February;86(3):1820–1831. PubMed PMC

Binz HK, Amstutz P, Kohl A, et al. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol. 2004. May;22(5):575–582. PubMed

Gebauer M, Skerra A. Engineered protein scaffolds as next-generation therapeutics. Annu Rev Pharmacol Toxicol. 2020. January;6(60):391–415. PubMed

Steemson JD, Baake M, Rakonjac J, et al. Tracking molecular recognition at the atomic level with a new protein scaffold based on the OB-fold. PLoS One. 2014;9(1):e86050. PubMed PMC

Koide A, Bailey CW, Huang X, et al. The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol. 1998. December 11;284(4):1141–1151. PubMed

Nord K, Gunneriusson E, Ringdahl J, et al. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol. 1997. August;15(8):772–777. PubMed

Bertschinger J, Grabulovski D, Neri D. Selection of single domain binding proteins by covalent DNA display. Protein Eng Des Sel. 2007. February;20(2):57–68. PubMed

Liu H, Su X, Si L, et al. The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): challenges and prospects. Protein Cell. 2018. July;9(7):596–615. PubMed PMC

Zwick MB, Labrijn AF, Wang M, et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol. 2001. November;75(22):10892–10905. PubMed PMC

Williams LD, Ofek G, Schatzle S, et al. Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Sci Immunol. 2017. January 27;2(7):7. PubMed PMC

Muster T, Steindl F, Purtscher M, et al. A conserved neutralizing epitope on Gp41 of human-immunodeficiency-virus type-1. J Virol. 1993. November;67(11):6642–6647. PubMed PMC

Pinto D, Fenwick C, Caillat C, et al. Structural basis for broad HIV-1 neutralization by the MPER-specific human broadly neutralizing antibody LN01. Cell Host Microbe. 2019. November 13;26(5):623–637 e8. PubMed PMC

Banerjee S, Shi H, Banasik M, et al. Evaluation of a novel multi-immunogen vaccine strategy for targeting 4E10/10E8 neutralizing epitopes on HIV-1 gp41 membrane proximal external region. Virology. 2017. May;505:113–126. PubMed PMC

Banerjee S, Shi H, Habte HH, et al. Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure. Virology. 2016. March;490:17–26. PubMed PMC

Habte HH, Banerjee S, Shi H, et al. Immunogenic properties of a trimeric gp41-based immunogen containing an exposed membrane-proximal external region. Virology. 2015. December;486:187–197. PubMed PMC

Kong R, Louder MK, Wagh K, et al. Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes. J Virol. 2015. March;89(5):2659–2671. PubMed PMC

Mendoza P, Gruell H, Nogueira L, et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature. 2018. September 27;561(7724):479-+. PubMed PMC

Wang Q, Michailidis E, Yu Y, et al. A combination of human broadly neutralizing antibodies against hepatitis B virus HBsAg with distinct epitopes suppresses escape mutations. Cell Host Microbe. 2020. June 3;28(2):335–349.e6. PubMed PMC

Madeira F, Park YM, Lee J, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019. July 2;47(W1):W636–W641. PubMed PMC

Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019. July 2;47(W1):W256–W259. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...