Myomedin scaffold variants targeted to 10E8 HIV-1 broadly neutralizing antibody mimic gp41 epitope and elicit HIV-1 virus-neutralizing sera in mice
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33993840
PubMed Central
PMC8128222
DOI
10.1080/21505594.2021.1920251
Knihovny.cz E-zdroje
- Klíčová slova
- Env glycoprotein, HIV vaccine, broadly neutralizing antibody, combinatorial library, protein mimetics, protein scaffold,
- MeSH
- epitopy MeSH
- genové produkty env - virus lidské imunodeficience genetika MeSH
- HIV infekce * prevence a kontrola MeSH
- HIV protilátky MeSH
- HIV-1 * genetika MeSH
- myši MeSH
- neutralizující protilátky MeSH
- pseudotypování virů MeSH
- široce neutralizující protilátky MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- epitopy MeSH
- genové produkty env - virus lidské imunodeficience MeSH
- HIV protilátky MeSH
- neutralizující protilátky MeSH
- široce neutralizující protilátky MeSH
One of the proposed strategies for the development of a more efficient HIV-1 vaccine is based on the identification of proteins binding to a paratope of chosen broadly neutralizing antibody (bNAb) that will mimic cognate HIV-1 Env (glyco)protein epitope and could be used as potent immunogens for induction of protective virus-neutralizing antibodies in the immunized individuals. To verify this "non-cognate ligand" concept, we developed a highly complex combinatorial library designed on a scaffold of human myomesin-1 protein domain and selected proteins called Myomedins specifically binding to variable regions of HIV-1 broadly neutralizing antibody 10E8. Immunization of mice with these Myomedin variants elicited the production of HIV-1 Env-specific antibodies. Hyperimmune sera bound to Env pseudotyped viruses and weakly/moderately neutralized 54% of tested clade A, B, C, and AE pseudotyped viruses variants in vitro. These results demonstrate that Myomedin variants have the potential to mimic Env epitopes and could be used as potential HIV-1 vaccine components.
Department of Immunology Palacký University Olomouc Olomouc Czech Republic
Department of Pharmacology and Immunotherapy Veterinary Research Institute Brno Czech Republic
Zobrazit více v PubMed
West AP Jr., Scharf L, Scheid JF, et al. Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell. 2014. February 13;156(4):633–648. PubMed PMC
Burton DR, Hangartner L.. Broadly neutralizing antibodies to HIV and their role in vaccine design. In: Littman DR, Yokoyama WM, editors. Annual review of immunology. Vol. 34. 2016. pp. 635–659. PubMed PMC
Moore PL. The neutralizing antibody response to the HIV-1 env protein. Curr HIV Res. 2018;16(1):21–28. PubMed PMC
Schoofs T, Barnes CO, Suh-Toma N, et al. Broad and potent neutralizing antibodies recognize the silent face of the HIV envelope. Immunity. 2019. June 18;50(6):1513–1529 e9. PubMed PMC
Klasse PJ, LaBranche CC, Ketas TJ, et al. Sequential and simultaneous immunization of rabbits with HIV-1 envelope glycoprotein SOSIP.664 trimers from clades A, B and C. PLoS Pathog. 2016. September;12(9):9. PubMed PMC
Sok D, Burton DR. Recent progress in broadly neutralizing antibodies to HIV. Nat Immunol. 2018. November;19(11):1179–1188. PubMed PMC
Lee JH, Andrabi R, Su CY, et al. A broadly neutralizing antibody targets the dynamic HIV envelope trimer apex via a long, rigidified, and anionic beta-hairpin structure. Immunity. 2017. April 18;46(4):690–702. PubMed PMC
McGuire AT, Hoot S, Dreyer AM, et al. Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies. J Exp Med. 2013. April 08;210(4):655–663. PubMed PMC
Escolano A, Gristick HB, Abernathy ME, et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature. 2019. June;570(7762):468–473. PubMed PMC
Steichen JM, Lin YC, Havenar-Daughton C, et al. A generalized HIV vaccine design strategy for priming of broadly neutralizing antibody responses. Science. 2019. December 6;366(6470):6470. PubMed PMC
Pejchal R, Doores KJ, Walker LM, et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science. 2011. November 25;334(6059):1097–1103. PubMed PMC
Behrens A-J, Vasiljevic S, Pritchard LK, et al. Composition and antigenic effects of individual glycan sites of a trimeric HIV-1 envelope glycoprotein. Cell Rep. 2016. March 22;14(11):2695–2706. PubMed PMC
Escolano A, Steichen JM, Dosenovic P, et al. Sequential immunization elicits broadly neutralizing anti-HIV-1 antibodies in ig knockin mice. Cell. 2016. September 8;166(6):1445–+. PubMed PMC
Steichen JM, Kulp DW, Tokatlian T, et al. HIV vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. Immunity. 2016. September 20;45(3):483–496. PubMed PMC
Bricault CA, Kovacs JM, Badamchi-Zadeh A, et al. Neutralizing antibody responses following long-term vaccination with HIV-1 Env gp140 in guinea pigs. J Virol. 2018. July 1;92(13):13. PubMed PMC
Banerjee K, Michael E, Eggink D, et al. Occluding the mannose moieties on human immunodeficiency virus type 1 gp120 with griffithsin improves the antibody responses to both proteins in Mice. AIDS Res Hum Retroviruses. 2012. February;28(2):206–214. PubMed PMC
Banerjee K, Andjelic S, Klasse PJ, et al. Enzymatic removal of mannose moieties can increase the immune response to HIV-1 gp120 in vivo. Virology. 2009. Jun-Jul;389(1–2):108–121. . PubMed PMC
Raska M, Moldoveanu Z, Novak J, et al. Delivery of DNA HIV-1 vaccine to the liver induces high and long-lasting humoral immune responses. Vaccine. 2008. March 17;26(12):1541–1551. PubMed PMC
Pugach P, Ozorowski G, Cupo A, et al. A native-like SOSIP.664 trimer based on an HIV-1 subtype B env Gene. J Virol. 2015. March;89(6):3380–3395. PubMed PMC
Raska M, Takahashi K, Czernekova L, et al. Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J Biol Chem. 2010. July 2;285(27):20860–20869. PubMed PMC
Kosztyu P, Kuchar M, Cerny J, et al. Proteins mimicking epitope of HIV-1 virus neutralizing antibody induce virus-neutralizing sera in mice. EBioMedicine. 2019. September;47:247–256. PubMed PMC
Ahmad JN, Li J, Biedermannova L, et al. Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein G. Proteins. 2012. March;80(3):774–789. PubMed
Kuchar M, Vankova L, Petrokova H, et al. Human interleukin-23 receptor antagonists derived from an albumin-binding domain scaffold inhibit IL-23-dependent ex vivo expansion of IL-17-producing T-cells. Proteins. 2014. June;82(6):975–989. PubMed PMC
Mareckova L, Petrokova H, Osicka R, et al. Novel binders derived from an albumin-binding domain scaffold targeting human prostate secretory protein 94 (PSP94). Protein Cell. 2015. October;6(10):774–779. PubMed PMC
Klasse PJ. Non-cognate ligands of Procrustean paratopes as potential vaccine components. EBioMedicine. 2019. September;47:6–7. PubMed PMC
Nelson JD, Brunel FM, Jensen R, et al. An affinity-enhanced neutralizing antibody against the membrane-proximal external region of human immunodeficiency virus type 1 gp41 recognizes an epitope between those of 2F5 and 4E10. J Virol. 2007. April;81(8):4033–4043. PubMed PMC
Kwong PD, Mascola JR, Nabel GJ. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Nat Rev Immunol. 2013. September;13(9):693–701. PubMed
Flemming J, Wiesen L, Herschhorn A. Conformation-dependent interactions between HIV-1 envelope glycoproteins and broadly neutralizing antibodies. AIDS Res Hum Retroviruses. 2018. September;34(9):794–803. PubMed
Wang Q, Finzi A, Sodroski J. The conformational states of the HIV-1 envelope glycoproteins. Trends Microbiol. 2020. August;28(8):655–667. PubMed PMC
Krizova L, Kuchar M, Petrokova H, et al. p19-targeted ABD-derived protein variants inhibit IL-23 binding and exert suppressive control over IL-23-stimulated expansion of primary human IL-17+ T-cells. Autoimmunity. 2017. March;50(2):102–113. PubMed
Hlavnickova M, Kuchar M, Osicka R, et al. ABD-derived protein blockers of human IL-17 receptor A as non-IgG alternatives for modulation of IL-17-dependent pro-inflammatory axis. Int J Mol Sci. 2018. October 9;19(10):10. PubMed PMC
Petrokova H, Masek J, Kuchar M, et al. Targeting human thrombus by liposomes modified with anti-fibrin protein binders. Pharmaceutics. 2019. December 2;11(12):12. PubMed PMC
Kabsch W. Xds. Acta Crystallogr., Sect D-Biol Crystallog. 2010. February;66(2):125–132. PubMed PMC
Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr., Sect D-Biol Crystallog. 2010. January;66(1):22–25. PubMed
Pinotsis N, Chatziefthimiou SD, Berkemeier F, et al. Superhelical architecture of the myosin filament-linking protein myomesin with unusual elastic properties. PLoS Biol. 2012. February;10(2):e1001261. PubMed PMC
Emsley P, Lohkamp B, Scott WG, et al. Features and development of Coot. Acta Crystallogr., Sect D-Biol Crystallog. 2010. April;66(4):486–501. PubMed PMC
Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D. 1997. May 1;53(3):240–255. PubMed
Painter J, Merritt EA. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr D. 2006. April;62(4):439–450. PubMed
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993. December 5;234(3):779–815. PubMed
Irimia A, Serra AM, Sarkar A, et al. Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: insights for vaccine and therapeutic design. PLoS Pathog. 2017. February;13(2):e1006212. PubMed PMC
Huang J, Ofek G, Laub L, et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature. 2012. November 15;491(7424):406–412. PubMed PMC
Kozakov D, Beglov D, Bohnuud T, et al. How good is automated protein docking? Proteins. 2013. December;81(12):2159–2166. PubMed PMC
Kozakov D, Brenke R, Comeau SR, et al. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins. 2006. November 1;65(2):392–406. PubMed
Kilkenny C, Browne WJ, Cuthill IC, et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010. June 29;8(6):e1000412. PubMed PMC
Montefiori DC. Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays. Curr Protoc Immunol. 2005. January;12(12 11). DOI:10.1002/0471142735.im1211s64. PubMed DOI
Schymkowitz J, Borg J, Stricher F, et al. The FoldX web server: an online force field. Nucleic Acids Res. 2005. July 1;33:W382–8. PubMed PMC
UniProt C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019. January 8;47(D1):D506–D515. PubMed PMC
Bricault CA, Yusim K, Seaman MS, et al. HIV-1 neutralizing antibody signatures and application to epitope-targeted vaccine design. Cell Host Microbe. 2019. January 9;25(1):59–72 e8. PubMed PMC
Harris AK, Bartesaghi A, Milne JL, et al. HIV-1 envelope glycoprotein trimers display open quaternary conformation when bound to the gp41 membrane-proximal external-region-directed broadly neutralizing antibody Z13e1. J Virol. 2013. June;87(12):7191–7196. PubMed PMC
Rathinakumar R, Dutta M, Zhu P, et al. Binding of anti-membrane-proximal gp41 monoclonal antibodies to CD4-liganded and -unliganded human immunodeficiency virus type 1 and simian immunodeficiency virus virions. J Virol. 2012. February;86(3):1820–1831. PubMed PMC
Binz HK, Amstutz P, Kohl A, et al. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol. 2004. May;22(5):575–582. PubMed
Gebauer M, Skerra A. Engineered protein scaffolds as next-generation therapeutics. Annu Rev Pharmacol Toxicol. 2020. January;6(60):391–415. PubMed
Steemson JD, Baake M, Rakonjac J, et al. Tracking molecular recognition at the atomic level with a new protein scaffold based on the OB-fold. PLoS One. 2014;9(1):e86050. PubMed PMC
Koide A, Bailey CW, Huang X, et al. The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol. 1998. December 11;284(4):1141–1151. PubMed
Nord K, Gunneriusson E, Ringdahl J, et al. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol. 1997. August;15(8):772–777. PubMed
Bertschinger J, Grabulovski D, Neri D. Selection of single domain binding proteins by covalent DNA display. Protein Eng Des Sel. 2007. February;20(2):57–68. PubMed
Liu H, Su X, Si L, et al. The development of HIV vaccines targeting gp41 membrane-proximal external region (MPER): challenges and prospects. Protein Cell. 2018. July;9(7):596–615. PubMed PMC
Zwick MB, Labrijn AF, Wang M, et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol. 2001. November;75(22):10892–10905. PubMed PMC
Williams LD, Ofek G, Schatzle S, et al. Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Sci Immunol. 2017. January 27;2(7):7. PubMed PMC
Muster T, Steindl F, Purtscher M, et al. A conserved neutralizing epitope on Gp41 of human-immunodeficiency-virus type-1. J Virol. 1993. November;67(11):6642–6647. PubMed PMC
Pinto D, Fenwick C, Caillat C, et al. Structural basis for broad HIV-1 neutralization by the MPER-specific human broadly neutralizing antibody LN01. Cell Host Microbe. 2019. November 13;26(5):623–637 e8. PubMed PMC
Banerjee S, Shi H, Banasik M, et al. Evaluation of a novel multi-immunogen vaccine strategy for targeting 4E10/10E8 neutralizing epitopes on HIV-1 gp41 membrane proximal external region. Virology. 2017. May;505:113–126. PubMed PMC
Banerjee S, Shi H, Habte HH, et al. Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure. Virology. 2016. March;490:17–26. PubMed PMC
Habte HH, Banerjee S, Shi H, et al. Immunogenic properties of a trimeric gp41-based immunogen containing an exposed membrane-proximal external region. Virology. 2015. December;486:187–197. PubMed PMC
Kong R, Louder MK, Wagh K, et al. Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes. J Virol. 2015. March;89(5):2659–2671. PubMed PMC
Mendoza P, Gruell H, Nogueira L, et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature. 2018. September 27;561(7724):479-+. PubMed PMC
Wang Q, Michailidis E, Yu Y, et al. A combination of human broadly neutralizing antibodies against hepatitis B virus HBsAg with distinct epitopes suppresses escape mutations. Cell Host Microbe. 2020. June 3;28(2):335–349.e6. PubMed PMC
Madeira F, Park YM, Lee J, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019. July 2;47(W1):W636–W641. PubMed PMC
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019. July 2;47(W1):W256–W259. PubMed PMC
Engineering PD-1-targeted small protein variants for in vitro diagnostics and in vivo PET imaging