Non-cognate ligands of hepatitis C virus envelope broadly neutralizing antibodies induce virus-neutralizing sera in mice
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
40766312
PubMed Central
PMC12321816
DOI
10.3389/fimmu.2025.1624299
Knihovny.cz E-resources
- Keywords
- broadly neutralizing antibodies, hepatitis C, mimotope, myomedins, protein mimicry, protein scaffolds, vaccine,
- MeSH
- Epitopes immunology MeSH
- Hepacivirus * immunology MeSH
- Hepatitis C Antibodies * immunology blood MeSH
- Hepatitis C * immunology MeSH
- Humans MeSH
- Ligands MeSH
- Mice MeSH
- Antibodies, Neutralizing * immunology MeSH
- Viral Envelope Proteins * immunology MeSH
- Broadly Neutralizing Antibodies * immunology MeSH
- Viral Hepatitis Vaccines immunology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Epitopes MeSH
- glycoprotein E2, Hepatitis C virus MeSH Browser
- Hepatitis C Antibodies * MeSH
- Ligands MeSH
- Antibodies, Neutralizing * MeSH
- Viral Envelope Proteins * MeSH
- Broadly Neutralizing Antibodies * MeSH
- Viral Hepatitis Vaccines MeSH
INTRODUCTION: The persistent rise in new Hepatitis C virus (HCV) infections threatens WHO efforts to eliminate HCV infection by 2030. Although direct-acting antiviral (DAA) drugs are efficacious, access remains limited, reinfections occur, and perinatal infections continue to pose long-term complications. Therefore, an effective anti-HCV vaccine is urgently needed. METHODS: We employed a highly complex combinatorial Myomedin-loop scaffold library to identify variants binding to paratopes of HCV E2-specific broadly neutralizing antibodies (bNAbs) HC-1AM and HC84.26.WH.5DL. The selected binders, named SHB and WIN, respectively, represent non-cognate mimotopes of the aforementioned bNAbs. These binders were subsequently used as immunogens in experimental mice to elicit serum antibodies capable of binding to HCV E2 and neutralize HCV pseudotyped viruses. RESULTS AND DISCUSSION: The non-cognate mimotopes SHB and WIN competed with the E2 glycoprotein for bNAbs binding and, after immunizing experimental mice, elicited E2- and HCV-pseudovirus-specific antibodies. WIN- and SHB-immunized mice exhibited neutralization against 15 HCV pseudoviruses with varying neutralization sensitivities. The most potent binders WIN028 and WIN047, were modified with a C-terminal His-tag, allowing the generation of WIN proteoliposome and subsequent use in experimental mice immunizations. Hyperimmune sera exhibited improved binding to HCV E2 and neutralized 60% of the tested HCV pseudoviruses. The broad neutralization of HCV pseudoviruses achieved by hypperimmune sera from SHB- and WIN-immunized mice highlights the potential of this approach in the HCV vaccine design.
Department of Chemistry of Natural Compounds University of Chemistry and Technology Prague Czechia
Infectious Diseases Institute Makerere University College of Health Sciences Kampala Uganda
See more in PubMed
Sliepen K, Radić L, Capella-Pujol J, Watanabe Y, Zon I, Chumbe A, et al. Induction of cross-neutralizing antibodies by a permuted hepatitis C virus glycoprotein nanoparticle vaccine candidate. Nat Commun. (2022) 13:7271. doi: 10.1038/s41467-022-34961-8, PMID: PubMed DOI PMC
Blach S, Terrault NA, Tacke F, Gamkrelidze I, Craxi A, Tanaka J, et al. Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: a modelling study. Lancet Gastroenterol Hepatol. (2022) 7:396–415. doi: 10.1016/S2468-1253(21)00472-6, PMID: PubMed DOI
Duncan JD, Urbanowicz RA, Tarr AW, Ball JK. Hepatitis C virus vaccine: Challenges and prospects. Vaccines. (2020) 8:90. doi: 10.3390/vaccines8010090, PMID: PubMed DOI PMC
Manne V, Ryan J, Wong J, Vengayil G, Basit SA, Gish RG. Hepatitis c vaccination: Where we are and where we need to be. Pathogens. (2021) 10:1619. doi: 10.3390/pathogens10121619, PMID: PubMed DOI PMC
Poordad F, Dieterich D. Treating hepatitis C: Current standard of care and emerging direct-acting antiviral agents. J Viral Hepatitis. (2012) 9:449–64. doi: 10.1111/j.1365-2893.2012.01617.x, PMID: PubMed DOI
World Health O. Global hepatitis report 2017. Geneva: World Health Organization; (2017).
Evon DM, Stewart PW, Amador J, Serper M, Lok AS, Sterling RK, et al. A comprehensive assessment of patient reported symptom burden, medical comorbidities, and functional well being in patients initiating direct acting antiviral therapy for chronic hepatitis C: Results from a large US multi-center observational study. PloS One. (2018) 13:e0196908. doi: 10.1371/journal.pone.0196908, PMID: PubMed DOI PMC
Cox AL. Challenges and promise of a hepatitis C virus vaccine. Cold Spring Harbor Perspect Med. (2020) 10:a036947. doi: 10.1101/cshperspect.a036947, PMID: PubMed DOI PMC
Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, et al. ICTV virus taxonomy profile: flaviviridae. J Gen Virol. (2017) 98:2–3. doi: 10.1099/jgv.0.000672, PMID: PubMed DOI PMC
Major ME, Feinstone SM. The molecular virology of hepatitis C. Hepatology. (1997) 25:1527–38. doi: 10.1002/hep.510250637, PMID: PubMed DOI
Sepulveda-Crespo D, Resino S, Martinez I. Hepatitis C virus vaccine design: Focus on the humoral immune response. J Biomed Sci. (2020) 27:78. doi: 10.1186/s12929-020-00669-4, PMID: PubMed DOI PMC
Yechezkel I, Law M, Tzarum N. From structural studies to hcv vaccine design. Viruses. (2021) 13:833. doi: 10.3390/v13050833, PMID: PubMed DOI PMC
Torrents de la Peña A, Sliepen K, Eshun-Wilson L, Newby ML, Allen JD, Zon I, et al. Structure of the hepatitis C virus E1E2 glycoprotein complex. Science. (2022) 78:263–269. doi: 10.1126/science.abn9884, PMID: PubMed DOI PMC
Pfaff-Kilgore JM, Davidson E, Kadash-Edmondson K, Hernandez M, Rosenberg E, Chambers R, et al. Sites of vulnerability in HCV E1E2 identified by comprehensive functional screening. Cell Rep. (2022) 39:110859. doi: 10.1016/j.celrep.2022.110859, PMID: PubMed DOI PMC
Tzarum N, Giang E, Kadam RU, Chen F, Nagy K, Augestad EH, et al. An alternate conformation of HCV E2 neutralizing face as an additional vaccine target. Sci Adv. (2020) 6:eabb5642. doi: 10.1126/sciadv.abb5642, PMID: PubMed DOI PMC
Guest JD, Pierce BG. Structure-based and rational design of a hepatitis C virus vaccine. Viruses. (2021) 13:837. doi: 10.3390/v13050837, PMID: PubMed DOI PMC
Torrents de la Peña A, del Moral Sánchez I, Burger JA, Bontjer I, Isik G, Eggink D, et al. Convergent HIV-1 Evolution upon Targeted Destabilization of the gp120-gp41 Interface. J Virol. (2021) 95:e00532-21. doi: 10.1128/jvi.00532-21, PMID: PubMed DOI PMC
Prentoe J, Janitzek CM, Velázquez-Moctezuma R, Soerensen A, Jørgensen T, Clemmensen S, et al. Two-component vaccine consisting of virus-like particles displaying hepatitis C virus envelope protein 2 oligomers. NPJ Vaccines. (2022) 7:148. doi: 10.1038/s41541-022-00570-1, PMID: PubMed DOI PMC
Kosztyu P, Kuchar M, Cerny J, Barkocziova L, Maly M, Petrokova H, et al. Proteins mimicking epitope of HIV-1 virus neutralizing antibody induce virus-neutralizing sera in mice. EBioMedicine. (2019) 47:247–56. doi: 10.1016/j.ebiom.2019.07.015, PMID: PubMed DOI PMC
Daniel Lišková V, Kosztyu P, Kuchař M, Černý J, Bharadwaj S, Petroková H, et al. Myomedin replicas of gp120 V3 loop glycan epitopes recognized by PGT121 and PGT126 antibodies as non-cognate antigens for stimulation of HIV-1 broadly neutralizing antibodies. Front Immunol. (2022) 13:1066361. doi: 10.3389/fimmu.2022.1066361, PMID: PubMed DOI PMC
Kuchař M, Kosztyu P, Daniel Lišková V, Černý J, Petroková H, Vróblová E, et al. Myomedin scaffold variants targeted to 10E8 HIV-1 broadly neutralizing antibody mimic gp41 epitope and elicit HIV-1 virus-neutralizing sera in mice. Virulence. (2021) 12:1271–87. doi: 10.1080/21505594.2021.1920251, PMID: PubMed DOI PMC
Fuerst TR, Pierce BG, Keck ZY, Foung SKH. Designing a B cell-based vaccine against a highly variable hepatitis C virus. Front Microbiol. (2017) 8:2692. doi: 10.3389/fmicb.2017.02692, PMID: PubMed DOI PMC
Urbanowicz RA, McClure CP, Brown RJP, Tsoleridis T, Persson MAA, Krey T, et al. A diverse panel of hepatitis C virus glycoproteins for use in vaccine research reveals extremes of monoclonal antibody neutralization resistance. J Virol. (2016) 90:3288–301. doi: 10.1128/jvi.02700-15, PMID: PubMed DOI PMC
Krupka M, Masek J, Barkocziova L, Turanek Knotigova P, Kulich P, Plockova J, et al. The position of his-tag in recombinant OspC and application of various adjuvants affects the intensity and quality of specific antibody response after immunization of experimental mice. PloS One. (2016) 11:e0148497. doi: 10.1371/journal.pone.0148497, PMID: PubMed DOI PMC
Raska M, Moldoveanu Z, Novak J, Hel Z, Novak L, Bozja J, et al. Delivery of DNA HIV-1 vaccine to the liver induces high and long-lasting humoral immune responses. Vaccine. (2008) 26:1541–51. doi: 10.1016/j.vaccine.2008.01.035, PMID: PubMed DOI PMC
Masek J, Bartheldyova E, Korvasova Z, Skrabalova M, Koudelka S, Kulich P, et al. Immobilization of histidine-tagged proteins on monodisperse metallochelation liposomes: Preparation and study of their structure. Anal Biochem. (2011) 408:95–104. doi: 10.1016/j.ab.2010.08.023, PMID: PubMed DOI
Alzua GP, Pihl AF, Offersgaard A, Duarte Hernandez CR, Duan Z, Feng S, et al. Inactivated genotype 1a, 2a and 3a HCV vaccine candidates induced broadly neutralising antibodies in mice. Gut. (2023) 72:560–72. doi: 10.1136/gutjnl-2021-326323, PMID: PubMed DOI PMC
Donnison T, McGregor J, Chinnakannan S, Hutchings C, Center RJ, Poumbourios P, et al. A pan-genotype hepatitis C virus viral vector vaccine generates T cells and neutralizing antibodies in mice. Hepatology. (2022) 76:1190–202. doi: 10.1002/hep.32470, PMID: PubMed DOI PMC
Nagarathinam K, Scheck A, Labuhn M, Ströh LJ, Herold E, Veselkova B, et al. Epitope-focused immunogens targeting the hepatitis C virus glycoproteins induce broadly neutralizing antibodies. Sci Adv. (2024) 10:eado2600. doi: 10.1126/sciadv.ado2600, PMID: PubMed DOI PMC
Lin T, Chi X, Liu X, Pan S, Chen W, Duan H, et al. Recombinant full-length hepatitis C virus E1E2 dimer elicits pangenotypic neutralizing antibodies. Front Immunol. (2022) 13:831285. doi: 10.3389/fimmu.2022.831285, PMID: PubMed DOI PMC
Chen F, Tzarum N, Lin X, Giang E, Velázquez-Moctezuma R, Augestad EH, et al. Functional convergence of a germline-encoded neutralizing antibody response in rhesus macaques immunized with HCV envelope glycoproteins. Immunity. (2021) 54:781–96.e4. doi: 10.1016/j.immuni.2021.02.013, PMID: PubMed DOI PMC
Wang Q, Finzi A, Sodroski J. The conformational states of the HIV-1 envelope glycoproteins. Trends Microbiol. (2020) . p:655–67. doi: 10.1016/j.tim.2020.03.007, PMID: PubMed DOI PMC
Wang S, Yates NL, Pollara J, Voronin Y, Stanfield-Oakley S, Han D, et al. Broadly binding and functional antibodies and persisting memory B cells elicited by HIV vaccine PDPHV. NPJ Vaccines. (2022) 7:18. doi: 10.1038/s41541-022-00441-9, PMID: PubMed DOI PMC
Underwood AP, Gupta M, Wu BR, Eltahla AA, Boo I, Wang JJ, et al. B-cell characteristics define HCV reinfection outcome. J Hepatol. (2024) 81:415–28. doi: 10.1016/j.jhep.2024.04.004, PMID: PubMed DOI
Frumento N, Sinnis-Bourozikas A, Paul HT, Stavrakis G, Zahid MN, Wang S, et al. Neutralizing antibodies evolve to exploit vulnerable sites in the HCV envelope glycoprotein E2 and mediate spontaneous clearance of infection. Immunity. (2024) 57:40–51.e5. doi: 10.1016/j.immuni.2023.12.004, PMID: PubMed DOI PMC
Wang R, Suzuki S, Guest JD, Heller B, Almeda M, Andrianov AK, et al. Induction of broadly neutralizing antibodies using a secreted form of the hepatitis C virus E1E2 heterodimer as a vaccine candidate. Proc Natl Acad Sci U.S.A. (2022) 119:e2112008119. doi: 10.1073/pnas.2112008119, PMID: PubMed DOI PMC
Thimme R. T cell immunity to hepatitis C virus: Lessons for a prophylactic vaccine. J Hepatol. (2021) 74:220–9. doi: 10.1016/j.jhep.2020.09.022, PMID: PubMed DOI
Barnes CO, Schoofs T, Gnanapragasam PNP, Golijanin J, Huey-Tubman KE, Gruell H, et al. A naturally arising broad and potent CD4-binding site antibody with low somatic mutation. Sci Adv. (2022) 8:eabp8155. doi: 10.1101/2022.03.16.484662, PMID: PubMed DOI PMC
Law JL, Chen C, Wong J, Hockman D, Santer DM, Frey SE, et al. A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans. PloS One. (2013) 8:e59776. doi: 10.1371/journal.pone.0059776, PMID: PubMed DOI PMC
Bailey JR, Barnes E, Cox AL. Approaches, progress, and challenges to hepatitis C vaccine development. Gastroenterology. (2019) 156:418–30. doi: 10.1053/j.gastro.2018.08.060, PMID: PubMed DOI PMC
Walimbwa SI, Maly P, Kafkova LR, Raska M. Beyond glycan barriers: non-cognate ligands and protein mimicry approaches to elicit broadly neutralizing antibodies for HIV-1. J Biomed Sci. (2024) 31:83. doi: 10.1186/s12929-024-01073-y, PMID: PubMed DOI PMC
Ward S, Lauer G, Isba R, Walker B, Klenerman P. Cellular immune responses against hepatitis C virus: the evidence base 2002. Clin Exp Immunol. (2002) 128:195–203. doi: 10.1046/j.1365-2249.2002.01840.x, PMID: PubMed DOI PMC
Garbuglia AR, Pauciullo S, Zulian V, Del Porto P. Update on hepatitis C vaccine: results and challenges. Viruses. (2024) 16:1337. doi: 10.3390/v16081337, PMID: PubMed DOI PMC