Beyond glycan barriers: non-cognate ligands and protein mimicry approaches to elicit broadly neutralizing antibodies for HIV-1

. 2024 Aug 21 ; 31 (1) : 83. [epub] 20240821

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39169357

Grantová podpora
CEREBIT CZ. 02.1.01/0.0/0.0/16_025/0007397 Ministerstvo Školství, Mládeže a Tělovýchovy
FNOL Grantová Agentura České Republiky
00098892 Grantová Agentura České Republiky
RVO: 86652036 Grantová Agentura České Republiky

Odkazy

PubMed 39169357
PubMed Central PMC11337606
DOI 10.1186/s12929-024-01073-y
PII: 10.1186/s12929-024-01073-y
Knihovny.cz E-zdroje

Human immunodeficiency virus type 1 (HIV-1) vaccine immunogens capable of inducing broadly neutralizing antibodies (bNAbs) remain obscure. HIV-1 evades immune responses through enormous diversity and hides its conserved vulnerable epitopes on the envelope glycoprotein (Env) by displaying an extensive immunodominant glycan shield. In elite HIV-1 viremic controllers, glycan-dependent bNAbs targeting conserved Env epitopes have been isolated and are utilized as vaccine design templates. However, immunological tolerance mechanisms limit the development of these antibodies in the general population. The well characterized bNAbs monoclonal variants frequently exhibit extensive levels of somatic hypermutation, a long third heavy chain complementary determining region, or a short third light chain complementarity determining region, and some exhibit poly-reactivity to autoantigens. This review elaborates on the obstacles to engaging and manipulating the Env glycoprotein as an effective immunogen and describes an alternative reverse vaccinology approach to develop a novel category of bNAb-epitope-derived non-cognate immunogens for HIV-1 vaccine design.

Zobrazit více v PubMed

UNAIDS Global AIDS Update 2022. IN DANGER: UNAIDS Global AIDS Update 2022. Geneva: Joint United Nations Programme on HIV/ AIDS; 2022. Licence: CC BY-NC-SA 3.0 IGO. https://aidsinfo.unaids.org/ (accessed March 5, 2024).

Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV cure: the latent reservoir. AIDS Res Hum Retroviruses. 2018;34:739–59. PubMed PMC

Mbonye U, Kizito F, Karn J. New insights into transcription elongation control of HIV-1 latency and rebound. Trends Immunol. 2023;44:60–71. PubMed

Seabright GE, Doores KJ, Burton DR, Crispin M. Protein and glycan mimicry in HIV vaccine design. J Mol Biol. 2019;431:2223–47. PubMed PMC

Wang Q, Finzi A, Sodroski J. The conformational states of the HIV-1 envelope glycoproteins. Trends Microbiol. 2020;28:655–67. PubMed PMC

Willis JR, Berndsen ZT, Ma KM, et al. Human immunoglobulin repertoire analysis guides design of vaccine priming immunogens targeting HIV V2-apex broadly neutralizing antibody precursors. Immunity. 2022;55:2149-2167.e9. PubMed PMC

Burton DR, Mascola JR. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat Immunol. 2015;16:571–6. PubMed PMC

Burton DR, Hangartner L. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu Rev Immunol. 2016;34:635–59. PubMed PMC

Zhou T, Xu K. Structural features of broadly neutralizing antibodies and rational design of vaccine. In: Advances in Experimental Medicine and Biology. Springer New York LLC, 2018: 73–95. PubMed

Awan SF, Happe M, Hofstetter AR, Gama L. Broadly neutralizing antibodies for treatment and prevention of HIV-1 infection. Curr Opin HIV AIDS. 2022;17:247–57. PubMed

Bjorkman PJ. Can we use structural knowledge to design a protective vaccine against HIV-1? HLA. 2020;95:95–103. PubMed

Stephenson KE, Wagh K, Korber B, Barouch DH. Vaccines and broadly neutralizing antibodies for HIV-1 prevention. Annu Rev Immunol. 2020. 10.1146/annurev-immunol-080219. PubMed PMC

Hioe CE, Li G, Liu X, et al. Non-neutralizing antibodies targeting the immunogenic regions of HIV-1 envelope reduce mucosal infection and virus burden in humanized mice. PLoS Pathog. 2022. 10.1371/journal.ppat.1010183. PubMed PMC

Valenzuela-Fernández A, Cabrera-Rodríguez R, Casado C, et al. Contribution of the HIV-1 envelope glycoprotein to AIDS pathogenesis and clinical progression. Biomedicines. 2022. 10.3390/biomedicines10092172. PubMed PMC

Deeks SG, Walker BD. Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity. 2007;27:406–16. PubMed

Gurdasani D, Iles L, Dillon DG, et al. A systematic review of definitions of extreme phenotypes of HIV control and progression. AIDS. 2014;28:149–62. PubMed PMC

Sugawara S, Reeves RK, Jost S. Learning to be elite: lessons from HIV-1 controllers and animal models on trained innate immunity and virus suppression. Front Immunol. 2022. 10.3389/fimmu.2022.858383. PubMed PMC

Gonzalo E. Mechanisms of Virologic Control and Clinical Characteristics of HIV+ Elite/Viremic Controllers. 2017 https://www.researchgate.net/publication/317984884. PubMed PMC

Schoofs T, Barnes CO, Suh-Toma N, et al. Broad and potent neutralizing antibodies recognize the silent face of the HIV envelope. Immunity. 2019;50:1513-1529.e9. PubMed PMC

Wagh K, Hahn BH, Korber B. Hitting the sweet spot: exploiting HIV-1 glycan shield for induction of broadly neutralizing antibodies. Curr Opin HIV AIDS. 2020;15:267–74. PubMed PMC

Zhou T, Zheng A, Baxa U, et al. A neutralizing antibody recognizing primarily N-linked glycan targets the silent face of the HIV envelope. Immunity. 2018;48:500-513.e6. PubMed PMC

Sok D, Burton DR. Recent progress in broadly neutralizing antibodies to HIV. Nat Immunol. 2018;19:1179–88. PubMed PMC

Dashti A, DeVico AL, Lewis GK, Sajadi MM. Broadly neutralizing antibodies against HIV: back to blood. Trends Mol Med. 2019;25:228–40. PubMed PMC

Briney BS, Willis JR, Crowe JE. Human peripheral blood antibodies with long HCDR3s are established primarily at original recombination using a limited subset of germline genes. PLoS ONE. 2012. 10.1371/journal.pone.0036750. PubMed PMC

Lee JH, Crotty S. HIV vaccinology: 2021 update. Semin Immunol. 2021;2021:51. 10.1016/j.smim.2021.101470. PubMed PMC

Sato S, Ouellet M, St-Pierre C, Tremblay MJ. Glycans, galectins, and HIV-1 infection. Ann N Y Acad Sci. 2012;1253:133–48. PubMed

Wei Q, Hargett AA, Knoppova B, et al. Glycan positioning impacts HIV-1 env glycan-shield density, function, and recognition by antibodies. iScience. 2020. 10.1016/j.isci.2020.101711. PubMed PMC

Hargett AA, Wei Q, Knoppova B, et al. Defining HIV-1 envelope N-glycan microdomains through site-specific heterogeneity profiles. J Virol. 2019. 10.1128/jvi.01177-18. PubMed PMC

Zhou JY, Cobb BA. Glycans in immunologic health and disease. Annu Rev Immunol. 2021. 10.1146/annurev-immunol-101819. PubMed

Rabinovich GA, van Kooyk Y, Cobb BA. Glycobiology of immune responses. Ann N Y Acad Sci. 2012;1253:1–15. PubMed PMC

Colomb F, Giron LB, Trbojevic-Akmacic I, Lauc G, Abdel-Mohsen M. Breaking the glyco-code of HIV persistence and immunopathogenesis. Curr HIV/AIDS Rep. 2019;16:151–68. PubMed PMC

Colomb F, Giron LB, Kuri-Cervantes L, et al. Sialyl-LewisX glycoantigen is enriched on cells with persistent HIV transcription during therapy. Cell Rep. 2020. 10.1016/j.celrep.2020.107991. PubMed PMC

Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv. 2024. 10.1016/j.biotechadv.2023.108283. PubMed PMC

Huang YL, Hung JT, Cheung SKC, et al. Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc Natl Acad Sci U S A. 2013;110:2517–22. PubMed PMC

Giron LB, Papasavvas E, Azzoni L, et al. Plasma and antibody glycomic biomarkers of time to HIV rebound and viral setpoint. AIDS. 2020;34:681–6. PubMed PMC

Raska M, Novak J. Involvement of envelope-glycoprotein glycans in HIV-1 biology and infection. Arch Immunol Ther Exp (Warsz). 2010;58:191–208. PubMed

Ackerman ME, Crispin M, Yu X, et al. Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J Clin Investig. 2013;123:2183–92. PubMed PMC

Deimel LP, Xue X, Sattentau QJ. Glycans in HIV-1 vaccine design—engaging the shield. Trends Microbiol. 2022;30:866–81. PubMed

Shen R, Raska M, Bimczok D, Novak J, Smith PD. HIV-1 envelope glycan moieties modulate HIV-1 transmission. J Virol. 2014;88:14258–67. PubMed PMC

Bonomelli C, Doores KJ, Dunlop DC, et al. The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PLoS ONE. 2011. 10.1371/journal.pone.0023521. PubMed PMC

Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj. 2019;1863:1480–97. PubMed PMC

Go EP, Hewawasam G, Liao H-X, et al. Characterization of glycosylation profiles of HIV-1 transmitted/founder envelopes by mass spectrometry. J Virol. 2011;85:8270–84. PubMed PMC

Crispin M, Ward AB, Wilson IA. Structure and immune recognition of the HIV glycan shield. Annu Rev Biophys. 2018;47:499–523. PubMed PMC

Silver ZA, Antonopoulos A, Haslam SM, et al. Discovery of O-linked carbohydrate on HIV-1 envelope and its role in shielding against one category of broadly neutralizing antibodies. Cell Rep. 2020;30:1862-1869.e4. PubMed PMC

Ward AB, Wilson IA. The HIV-1 envelope glycoprotein structure: nailing down a moving target. Immunol Rev. 2017;275:21–32. PubMed PMC

Kong L, Lee JH, Doores KJ, et al. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nat Struct Mol Biol. 2013;20:796–803. PubMed PMC

Moyo T, Kitchin D, Moore PL. Targeting the N332-supersite of the HIV-1 envelope for vaccine design. Expert Opin Ther Targets. 2020;24:499–509. PubMed PMC

Sok D, Pauthner M, Briney B, et al. A prominent site of antibody vulnerability on HIV envelope incorporates a motif associated with CCR5 binding and its camouflaging glycans. Immunity. 2016;45:31–45. PubMed PMC

Barnes CO, Gristick HB, Freund NT, et al. Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nat Commun. 2018. 10.1038/s41467-018-03632-y. PubMed PMC

Binley JM, Ban Y-EA, Crooks ET, et al. Role of complex carbohydrates in human immunodeficiency virus type 1 infection and resistance to antibody neutralization. J Virol. 2010;84:5637–55. PubMed PMC

Walker LM, Huber M, Doores KJ, et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature. 2011;477:466–70. PubMed PMC

McCoy LE, van Gils MJ, Ozorowski G, et al. Holes in the glycan shield of the native HIV envelope are a target of trimer-elicited neutralizing antibodies. Cell Rep. 2016;16:2327–38. PubMed PMC

Seabright GE, Cottrell CA, van Gils MJ, et al. Networks of HIV-1 envelope glycans maintain antibody epitopes in the face of glycan additions and deletions. Structure. 2020;28:897-909.e6. PubMed PMC

Bonsignori M, Liao HX, Gao F, et al. Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. Immunol Rev. 2017;275:145–60. PubMed PMC

Moore PL, Gorman J, Doria-Rose NA, Morris L. Ontogeny-based immunogens for the induction of V2-directed HIV broadly neutralizing antibodies. Immunol Rev. 2017;275:217–29. PubMed PMC

O’Connell RJ, Kim JH, Excler JL. The HIV-1 gp120 V1V2 loop: structure, function and importance for vaccine development. Expert Rev Vaccines. 2014;13:1489–500. PubMed

Kwong PD, Mascola JR. HIV-1 vaccines based on antibody identification, B cell ontogeny, and epitope structure. Immunity. 2018;48:855–71. PubMed

Doria-Rose NA, Bhiman JN, Roark RS, et al. New member of the V1V2-directed CAP256-VRC26 lineage that shows increased breadth and exceptional potency. J Virol. 2016;90:76–91. PubMed PMC

Andrabi R, Su CY, Liang CH, et al. Glycans function as anchors for antibodies and help drive HIV broadly neutralizing antibody development. Immunity. 2017;47:524-537.e3. PubMed PMC

Julg B, Stephenson KE, Wagh K, et al. Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1 clinical trial. Nat Med. 2022;28:1288–96. PubMed PMC

Haynes BF, Wiehe K, Borrrow P, et al. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat Rev Immunol. 2022. 10.1038/s41577-022-00753-w. PubMed PMC

Hariharan V, Kane RS. Glycosylation as a tool for rational vaccine design. Biotechnol Bioeng. 2020;117:2556–70. PubMed

Friedrich N, Stiegeler E, Glögl M, et al. Distinct conformations of the HIV-1 V3 loop crown are targetable for broad neutralization. Nat Commun. 2021. 10.1038/s41467-021-27075-0. PubMed PMC

Jiang X, Burke V, Totrov M, et al. Conserved structural elements in the V3 crown of HIV-1 gp120. Nat Struct Mol Biol. 2010;17:955–61. PubMed

Escolano A, Gristick HB, Gautam R, et al. Sequential immunization of macaques elicits heterologous neutralizing antibodies targeting the V3-glycan patch of HIV-1 Env. 2021 https://www.science.org. PubMed PMC

Scharf L, Scheid JF, Lee JH, et al. Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike. Cell Rep. 2014;7:785–95. PubMed PMC

Yuan M, Cottrell CA, Ozorowski G, et al. Conformational plasticity in the HIV-1 fusion peptide facilitates recognition by broadly neutralizing antibodies. Cell Host Microbe. 2019;25:873-883.e5. PubMed PMC

Pancera M, Zhou T, Druz A, et al. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature. 2014;514:455–61. PubMed PMC

Zhang Z, Wang Q, Nguyen HT, et al. Alterations in gp120 glycans or the gp41 fusion peptide-proximal region modulate the stability of the human immunodeficiency virus (HIV-1) envelope glycoprotein pretriggered conformation. J Virol. 2023. 10.1128/jvi.00592-23. PubMed PMC

Klasse PJ. Fusion peptide-directed antibodies: humoral armor against HIV-1 infection. Sci Transl Med. 2024. 10.1126/scitranslmed.adl2162. PubMed

Torrentsdela Peña A, del Moral Sánchez I, Burger JA, et al. Convergent HIV-1 evolution upon targeted destabilization of the gp120-gp41 interface. J Virol. 2021. 10.1128/jvi.00532-21. PubMed PMC

Ringe RP, Colin P, Ozorowski G, et al. Glycan heterogeneity as a cause of the persistent fraction in HIV-1 neutralization. PLoS Pathog. 2023. 10.1371/journal.ppat.1011601. PubMed PMC

Corrigan AR, Duan H, Cheng C, et al. Fusion peptide priming reduces immune responses to HIV-1 envelope trimer base. Cell Rep. 2021. 10.1016/j.celrep.2021.108937. PubMed PMC

Falkowska E, Le KM, Ramos A, et al. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity. 2014;40:657–68. PubMed PMC

Wibmer CK, Gorman J, Ozorowski G, et al. Structure and recognition of a novel HIV-1 gp120-gp41 interface antibody that caused MPER exposure through viral escape. PLoS Pathog. 2017. 10.1371/journal.ppat.1006074. PubMed PMC

Pegu A, Lovelace SE, Demouth ME, et al. Antibodies targeting the fusion peptide on the HIV envelope provide protection to rhesus macaques against mucosal SHIV challenge. 2024 https://www.science.org. PubMed

Wang S, Matassoli F, Zhang B, et al. HIV-1 neutralizing antibodies elicited in humans by a prefusion-stabilized envelope trimer form a reproducible class targeting fusion peptide. Cell Rep. 2023. 10.1016/j.celrep.2023.112755. PubMed PMC

Stamatatos L, Pancera M, McGuire AT. Germline-targeting immunogens. Immunol Rev. 2017;275:203–16. PubMed PMC

Gristick HB, Von Boehmer L, West AP, et al. Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site. Nat Struct Mol Biol. 2016;23:906–15. PubMed PMC

van Schooten J, Farokhi E, Schorcht A, et al. Identification of IOMA-class neutralizing antibodies targeting the CD4-binding site on the HIV-1 envelope glycoprotein. Nat Commun. 2022. 10.1038/s41467-022-32208-0. PubMed PMC

Corey L, Gilbert PB, Juraska M, et al. Two randomized trials of neutralizing antibodies to prevent HIV-1 acquisition. N Engl J Med. 2021;384:1003–14. PubMed PMC

He L, Sok D, Azadnia P, et al. Toward a more accurate view of human B-cell repertoire by next-generation sequencing, unbiased repertoire capture and single-molecule barcoding. Sci Rep. 2014. 10.1038/srep06778. PubMed PMC

Deimel LP, Sattentau QJ. Shared sugars—parasite glycan homology in HIV-1 vaccine design. Trends Parasitol. 2022;38:498–500. PubMed

Zhang YN, Paynter J, Antanasijevic A, et al. Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimmers as HIV-1 vaccine candidates. Nat Commun. 2023. 10.1038/s41467-023-37742-z. PubMed PMC

Lee JH, Ozorowski G, Ward AB. Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science. 1979;2016(351):1043–8. PubMed PMC

Zhang L, Irimia A, He L, et al. An MPER antibody neutralizes HIV-1 using germline features shared among donors. Nat Commun. 2019. 10.1038/s41467-019-12973-1. PubMed PMC

Rantalainen K, Berndsen ZT, Antanasijevic A, et al. HIV-1 envelope and MPER antibody structures in lipid assemblies. Cell Rep. 2020. 10.1016/j.celrep.2020.107583. PubMed PMC

Tam EH, Peng Y, Cheah MXY, Yan C, Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res. 2024. 10.1016/j.antiviral.2024.105834. PubMed

Frey G, Peng H, Rits-Volloch S, Morelli M, Cheng Y, Chen B. A fusion-intermediate state of HIV-1 gp41 targeted by broadly neutralizing antibodies. Proc Natl Acad Sci U S A. 2008. 10.1073/pnas.0800255105. PubMed PMC

Bell BN, Bruun TUJ, Friedland N, Kim PS. HIV-1 prehairpin intermediate inhibitors show efficacy independent of neutralization tier. Proc Natl Acad Sci U S A. 2023. 10.1073/pnas.2215792120. PubMed PMC

Rao PG, Lambert GS, Upadhyay C. Broadly neutralizing antibody epitopes on HIV-1 particles are exposed after virus interaction with host cells. J Virol. 2023. 10.1128/jvi.00710-23. PubMed PMC

Caillat C, Guilligay D, Sulbaran G, Weissenhorn W. Neutralizing antibodies targeting HIV-1 gp41. Viruses. 2020. 10.3390/v12111210. PubMed PMC

White JM, Ward AE, Odongo L, Tamm LK. Annual review of virology viral membrane fusion: a dance between proteins and lipids. Annu Rev Virol. 2023. 10.1146/annurev-virology-111821. PubMed PMC

Burton DR. Antiviral neutralizing antibodies: from in vitro to in vivo activity. Nat Rev Immunol. 2023;23:720–34. PubMed PMC

Mahomed S, Garrett N, Baxter C, Abdool Karim Q, Abdool Karim SS. Clinical trials of broadly neutralizing monoclonal antibodies for human immunodeficiency virus prevention: a review. J Infect Dis. 2021;223:370–80. PubMed PMC

Williams WB, Alam SM, Ofek G, et al. Vaccine induction of heterologous HIV-1-neutralizing antibody B cell lineages in humans. Cell. 2024;187:2919-2934.e20. PubMed

Haynes BF, Burton DR, Mascola JR. Multiple roles for HIV broadly neutralizing antibodies. Sci Transl Med. 2019. 10.1126/scitranslmed.aaz2686. PubMed PMC

Sanders RW, Moore JP. Progress on priming HIV-1 immunity. Science. 1979;2024(384):738–9. PubMed

Landovitz RJ, Scott H, Deeks SG. Prevention, treatment and cure of HIV infection. Nat Rev Microbiol. 2023. 10.1038/s41579-023-00914-1. PubMed

Leggat DJ, Cohen KW, Willis JR, et al. Vaccination induces HIV broadly neutralizing antibody precursors in humans. Science. 1979;2022:378. 10.1126/science.add6502. PubMed PMC

Xie Z, Lin YC, Steichen JM, et al. mRNA-LNP HIV-1 trimer boosters elicit precursors to broad neutralizing antibodies. Science. 1979;2024:384. 10.1126/science.adk0582. PubMed

Wang X, Cottrell CA, Hu X, et al. mRNA-LNP prime boost evolves precursors toward VRC01-like broadly neutralizing antibodies in preclinical humanized mouse models. 2024. https://www.science.org. PubMed

Jardine J, Julien JP, Menis S, et al. Rational HIV immunogen design to target specific germline B cell receptors. Science. 1979;2013(340):711–6. PubMed PMC

Mu Z, Haynes BF, Cain DW. Strategies for eliciting multiple lineages of broadly neutralizing antibodies to HIV by vaccination. Curr Opin Virol. 2021;51:172–8. PubMed PMC

Abbott RK, Lee JH, Menis S, et al. Precursor frequency and affinity determine B Cell competitive fitness in germinal centers, tested with germline-targeting HIV vaccine immunogens. Immunity. 2018;48:133-146.e6. PubMed PMC

Abbott RK, Crotty S. Factors in B cell competition and immunodominance. Immunol Rev. 2020;296:120–31. PubMed PMC

Wiehe K, Bradley T, Meyerhoff RR, et al. Functional relevance of improbable antibody mutations for HIV broadly neutralizing antibody development. Cell Host Microbe. 2018;23:759-765.e6. PubMed PMC

Saunders KO, Wiehe K, Tian M, et al. Targeted selection of HIV-specific antibody mutations by engineering B cell maturation. Science. 1979;2019:366. 10.1126/science.aay7199. PubMed PMC

Duan H, Chen X, Boyington JC, et al. Glycan masking focuses immune responses to the HIV-1 CD4-binding site and enhances elicitation of VRC01-class precursor antibodies. Immunity. 2018;49:301-311.e5. PubMed PMC

Kräutler NJ, Suan D, Butt D, et al. Differentiation of germinal center B cells into plasma cells is initiated by high-affinity antigen and completed by Tfh cells. J Exp Med. 2017;214:1259–67. PubMed PMC

Merkenschlager J, Berz RM, Ramos V, et al. Continually recruited naïve T cells contribute to the follicular helper and regulatory T cell pools in germinal centers. Nat Commun. 2023. 10.1038/s41467-023-41880-9. PubMed PMC

Mascola JR, Haynes BF. HIV-1 neutralizing antibodies: understanding nature’s pathways. Immunol Rev. 2013;254:225–44. PubMed PMC

Haynes BF, Kelsoe G, Harrison SC, Kepler TB. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol. 2012;30:423–33. PubMed PMC

Liu Q. Designing boosting immunogens for HIV-1 vaccine development. Cell Host Microbe. 2024;32:632–4. PubMed

Wiehe K, Saunders KO, Stalls V, et al. Mutation-guided vaccine design: a process for developing boosting immunogens for HIV broadly neutralizing antibody induction. Cell Host Microbe. 2024;32:693-709.e7. PubMed

Kwong PD, DeKosky BJ, Ulmer JB. Antibody-guided structure-based vaccines. Semin Immunol. 2020. 10.1016/j.smim.2020.101428. PubMed

Kuchař M, Kosztyu P, Daniel Lišková V, et al. Myomedin scaffold variants targeted to 10E8 HIV-1 broadly neutralizing antibody mimic gp41 epitope and elicit HIV-1 virus-neutralizing sera in mice. Virulence. 2021;12:1271–87. PubMed PMC

Kosztyu P, Kuchar M, Cerny J, et al. Proteins mimicking epitope of HIV-1 virus neutralizing antibody induce virus-neutralizing sera in mice. EBioMedicine. 2019;47:247–56. PubMed PMC

Daniel Lišková V, Kosztyu P, Kuchař M, et al. Myomedin replicas of gp120 V3 loop glycan epitopes recognized by PGT121 and PGT126 antibodies as non-cognate antigens for stimulation of HIV-1 broadly neutralizing antibodies. Front Immunol. 2022;13:1066361. PubMed PMC

Klasse PJ. Non-cognate ligands of Procrustean paratopes as potential vaccine components. EBioMedicine. 2019;47:6–7. PubMed PMC

Ahmad JN, Li J, Biedermannová L, et al. Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein G. Proteins. 2012;80:774–89. PubMed

Raska M, Moldoveanu Z, Novak J, et al. Delivery of DNA HIV-1 vaccine to the liver induces high and long-lasting humoral immune responses. Vaccine. 2008;26:1541–51. PubMed PMC

Martina CE, Crowe JE, Meiler J. Glycan masking in vaccine design: Targets, immunogens and applications. Front Immunol. 2023. 10.3389/fimmu.2023.1126034. PubMed PMC

Derking R, Allen JD, Cottrell CA, et al. Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. Cell Rep. 2021. 10.1016/j.celrep.2021.108933. PubMed PMC

Urban J, Jin C, Thomsson KA, et al. Predicting glycan structure from tandem mass spectrometry via deep learning. Nat Methods. 2024. 10.1038/s41592-024-02314-6. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...