The Position of His-Tag in Recombinant OspC and Application of Various Adjuvants Affects the Intensity and Quality of Specific Antibody Response after Immunization of Experimental Mice

. 2016 ; 11 (2) : e0148497. [epub] 20160205

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26848589

Lyme disease, Borrelia burgdorferi-caused infection, if not recognized and appropriately treated by antibiotics, may lead to chronic complications, thus stressing the need for protective vaccine development. The immune protection is mediated by phagocytic cells and by Borrelia-specific complement-activating antibodies, associated with the Th1 immune response. Surface antigen OspC is involved in Borrelia spreading through the host body. Previously we reported that recombinant histidine tagged (His-tag) OspC (rOspC) could be attached onto liposome surfaces by metallochelation. Here we report that levels of OspC-specific antibodies vary substantially depending upon whether rOspC possesses an N' or C' terminal His-tag. This is the case in mice immunized: (a) with rOspC proteoliposomes containing adjuvants MPLA or non-pyrogenic MDP analogue MT06; (b) with free rOspC and Montanide PET GEL A; (c) with free rOspC and alum; or (d) with adjuvant-free rOspC. Stronger responses are noted with all N'-terminal His-tag rOspC formulations. OspC-specific Th1-type antibodies predominate post-immunization with rOspC proteoliposomes formulated with MPLA or MT06 adjuvants. Further analyses confirmed that the structural features of soluble N' and C' terminal His-tag rOspC and respective rOspC proteoliposomes are similar including their thermal stabilities at physiological temperatures. On the other hand, a change in the position of the rOspC His-tag from N' to C' terminal appears to affect substantially the immunogenicity of rOspC arguably due to steric hindrance of OspC epitopes by the C' terminal His-tag itself and not due to differences in overall conformations induced by changes in the His-tag position in rOspC variants.

Zobrazit více v PubMed

Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH Jr. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2011;2(3): 123–128. 10.1016/j.ttbdis.2011.04.002 PubMed DOI PMC

Lantos PM. Chronic Lyme disease. Infect Dis Clin North Am. 2015;29(2): 325–340. 10.1016/j.idc.2015.02.006 PubMed DOI PMC

Halperin JJ. Chronic Lyme disease: misconceptions and challenges for patient management. Infect Drug Resist. 2015;8: 119–128. 10.2147/IDR.S66739 PubMed DOI PMC

Krupka M, Raska M, Belakova J, Horynova M, Novotny R, Weigl E. Biological aspects of Lyme disease spirochetes: unique bacteria of the Borrelia burgdorferi species group. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2007;151(2): 175–186. PubMed

Krupka M, Zachova K, Weigl E, Raska M. Prevention of lyme disease: promising research or sisyphean task? Arch Immunol Ther Exp (Warsz). 2011;59(4): 261–275. PubMed

Tilly K, Rosa PA, Stewart PE. Biology of infection with Borrelia burgdorferi. Infect Dis Clin North Am. 2008;22(2): 217–234, v. 10.1016/j.idc.2007.12.013 PubMed DOI PMC

Boardman BK, He M, Ouyang Z, Xu H, Pang X, Yang XF. Essential role of the response regulator Rrp2 in the infectious cycle of Borrelia burgdorferi. Infect Immun. 2008;76(9): 3844–3853. 10.1128/IAI.00467-08 PubMed DOI PMC

Srivastava SY, de Silva AM. Reciprocal expression of ospA and ospC in single cells of Borrelia burgdorferi. J Bacteriol. 2008;190(10): 3429–3433. 10.1128/JB.00085-08 PubMed DOI PMC

Gilmore RD Jr., Mbow ML. Conformational nature of the Borrelia burgdorferi B31 outer surface protein C protective epitope. Infect Immun. 1999;67(10): 5463–5469. PubMed PMC

Jobe DA, Lovrich SD, Schell RF, Callister SM. C-terminal region of outer surface protein C binds borreliacidal antibodies in sera from patients with Lyme disease. Clin Diagn Lab Immunol. 2003;10(4): 573–578. PubMed PMC

Buckles EL, Earnhart CG, Marconi RT. Analysis of antibody response in humans to the type A OspC loop 5 domain and assessment of the potential utility of the loop 5 epitope in Lyme disease vaccine development. Clin Vaccine Immunol. 2006;13(10): 1162–1165. PubMed PMC

Wilske B, Preac-Mursic V, Jauris S, Hofmann A, Pradel I, Soutschek E, et al. Immunological and molecular polymorphisms of OspC, an immunodominant major outer surface protein of Borrelia burgdorferi. Infect Immun. 1993;61(5): 2182–2191. PubMed PMC

Fuchs R, Jauris S, Lottspeich F, Preac-Mursic V, Wilske B, Soutschek E. Molecular analysis and expression of a Borrelia burgdorferi gene encoding a 22 kDa protein (pC) in Escherichia coli. Mol Microbiol. 1992;6(4): 503–509. PubMed

Krupka M, Belakova J, Sebestova M, Tuhackova J, Raska M, Vrzal V, et al. Isolation and purification of recombinant outer surface protein C (rOspC) of Borrelia burgdorferi sensu lato. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005;149(2): 261–264. PubMed

Krupka M, Masek J, Bartheldyova E, Turanek Knotigova P, Plockova J, Korvasova Z, et al. Enhancement of immune response towards non-lipidized Borrelia burgdorferi recombinant OspC antigen by binding onto the surface of metallochelating nanoliposomes with entrapped lipophilic derivatives of norAbuMDP. J Control Release. 2012;160(2): 374–381. 10.1016/j.jconrel.2012.02.017 PubMed DOI

Knotigova PT, Zyka D, Masek J, Kovalova A, Krupka M, Bartheldyova E, et al. Molecular adjuvants based on nonpyrogenic lipophilic derivatives of norAbuMDP/GMDP formulated in nanoliposomes: stimulation of innate and adaptive immunity. Pharm Res. 2015;32(4): 1186–1199. 10.1007/s11095-014-1516-y PubMed DOI

Altin JG, Parish CR. Liposomal vaccines—targeting the delivery of antigen. Methods. 2006;40(1): 39–52. PubMed

Masek J, Bartheldyova E, Korvasova Z, Skrabalova M, Koudelka S, Kulich P, et al. Immobilization of histidine-tagged proteins on monodisperse metallochelation liposomes: Preparation and study of their structure. Anal Biochem. 2011;408(1): 95–104. 10.1016/j.ab.2010.08.023 PubMed DOI

Masek J, Bartheldyova E, Turanek-Knotigova P, Skrabalova M, Korvasova Z, Plockova J, et al. Metallochelating liposomes with associated lipophilised norAbuMDP as biocompatible platform for construction of vaccines with recombinant His-tagged antigens: preparation, structural study and immune response towards rHsp90. J Control Release. 2011;151(2): 193–201. 10.1016/j.jconrel.2011.01.016 PubMed DOI

Turanek J, Masek J, Krupka M, Raska M. Functionalised nanoliposomes for construction of recombinant vaccines: Lymes disease as an example In: Giese M, editor. Molecular Vaccines: From Prophylaxis to Therapy. 2 London, UK: Springer-Verlag; 2014. p. 561–577.

Turanek J, Masek J, Raska M, Ledvina M. Application of Liposomes for Construction of Vaccines In: Ghista DN, editor. Biomedical Science, Engineering and Technology. Rijeka, Croatia: In Tech; 2012. p. 653–678.

Mayer A, Sharma SK, Tolner B, Minton NP, Purdy D, Amlot P, et al. Modifying an immunogenic epitope on a therapeutic protein: a step towards an improved system for antibody-directed enzyme prodrug therapy (ADEPT). Br J Cancer. 2004;90(12): 2402–2410. PubMed PMC

Hipler K, Miller A, Turanek J, Ledvina M, inventorsComponds derived from normuramyldipeptide2013.

Kowalska M, Galuszka P, Frebortova J, Sebela M, Beres T, Hluska T, et al. Vacuolar and cytosolic cytokinin dehydrogenases of Arabidopsis thaliana: heterologous expression, purification and properties. Phytochemistry. 2010;71(17–18): 1970–1978. 10.1016/j.phytochem.2010.08.013 PubMed DOI

Petrovska B, Jerabkova H, Chamrad I, Vrana J, Lenobel R, Urinovska J, et al. Proteomic analysis of barley cell nuclei purified by flow sorting. Cytogenet Genome Res. 2014;143(1–3): 78–86. 10.1159/000365311 PubMed DOI

Krupka M, Zachova K, Cahlikova R, Vrbkova J, Novak Z, Sebela M, et al. Endotoxin-minimized HIV-1 p24 fused to murine hsp70 activates dendritic cells, facilitates endocytosis and p24-specific Th1 response in mice. Immunol Lett. 2015;166(1): 36–44. 10.1016/j.imlet.2015.05.010 PubMed DOI

Figueroa CM, Iglesias AA. Aldose-6-phosphate reductase from apple leaves: Importance of the quaternary structure for enzyme activity. Biochimie. 2010;92(1): 81–88. 10.1016/j.biochi.2009.09.013 PubMed DOI

Bielecka MK, Devos N, Gilbert M, Hung MC, Weynants V, Heckels JE, et al. Recombinant protein truncation strategy for inducing bactericidal antibodies to the macrophage infectivity potentiator protein of Neisseria meningitidis and circumventing potential cross-reactivity with human FK506-binding proteins. Infect Immun. 2015;83(2): 730–742. 10.1128/IAI.01815-14 PubMed DOI PMC

Lovrich SD, Jobe DA, Schell RF, Callister SM. Borreliacidal OspC antibodies specific for a highly conserved epitope are immunodominant in human lyme disease and do not occur in mice or hamsters. Clin Diagn Lab Immunol. 2005;12(6): 746–751. PubMed PMC

Kumaran D, Eswaramoorthy S, Luft BJ, Koide S, Dunn JJ, Lawson CL, et al. Crystal structure of outer surface protein C (OspC) from the Lyme disease spirochete, Borrelia burgdorferi. EMBO J. 2001;20(5): 971–978. PubMed PMC

Fikrig E, Barthold SW, Kantor FS, Flavell RA. Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. Science. 1990;250(4980): 553–556. PubMed

Probert WS, LeFebvre RB. Protection of C3H/HeN mice from challenge with Borrelia burgdorferi through active immunization with OspA, OspB, or OspC, but not with OspD or the 83-kilodalton antigen. Infect Immun. 1994;62(5): 1920–1926. PubMed PMC

Bockenstedt LK, Fikrig E, Barthold SW, Flavell RA, Kantor FS. Identification of a Borrelia burgdorferi OspA T cell epitope that promotes anti-OspA IgG in mice. J Immunol. 1996;157(12): 5496–5502. PubMed

Bockenstedt LK, Fikrig E, Barthold SW, Kantor FS, Flavell RA. Inability of truncated recombinant Osp A proteins to elicit protective immunity to Borrelia burgdorferi in mice. J Immunol. 1993;151(2): 900–906. PubMed

Koide S, Yang X, Huang X, Dunn JJ, Luft BJ. Structure-based design of a second-generation Lyme disease vaccine based on a C-terminal fragment of Borrelia burgdorferi OspA. J Mol Biol. 2005;350(2): 290–299. PubMed

Comstedt P, Hanner M, Schuler W, Meinke A, Lundberg U. Design and development of a novel vaccine for protection against Lyme borreliosis. PLoS One. 2014;9(11): e113294 10.1371/journal.pone.0113294 PubMed DOI PMC

Earnhart CG, Marconi RT. Construction and analysis of variants of a polyvalent Lyme disease vaccine: approaches for improving the immune response to chimeric vaccinogens. Vaccine. 2007;25(17): 3419–3427. PubMed PMC

Erdile LF, Brandt MA, Warakomski DJ, Westrack GJ, Sadziene A, Barbour AG, et al. Role of attached lipid in immunogenicity of Borrelia burgdorferi OspA. Infect Immun. 1993;61(1): 81–90. PubMed PMC

Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci. 2008;65(20): 3231–3240. 10.1007/s00018-008-8228-6 PubMed DOI PMC

Ma J, Bulger PA, Davis DR, Perilli-Palmer B, Bedore DA, Kensil CR, et al. Impact of the saponin adjuvant QS-21 and aluminium hydroxide on the immunogenicity of recombinant OspA and OspB of Borrelia burgdorferi. Vaccine. 1994;12(10): 925–932. PubMed

Munson EL, Du Chateau BK, Jobe DA, Lovrich SD, Callister SM, Schell RF. Production of borreliacidal antibody to outer surface protein A in vitro and modulation by interleukin-4. Infect Immun. 2000;68(10): 5496–5501. PubMed PMC

Earnhart CG, Buckles EL, Marconi RT. Development of an OspC-based tetravalent, recombinant, chimeric vaccinogen that elicits bactericidal antibody against diverse Lyme disease spirochete strains. Vaccine. 2007;25(3): 466–480. PubMed

Earnhart CG, Marconi RT. OspC phylogenetic analyses support the feasibility of a broadly protective polyvalent chimeric Lyme disease vaccine. Clin Vaccine Immunol. 2007;14(5): 628–634. PubMed PMC

Earnhart CG, Marconi RT. An octavalent lyme disease vaccine induces antibodies that recognize all incorporated OspC type-specific sequences. Hum Vaccin. 2007;3(6): 281–289. PubMed

Schulte-Spechtel U, Fingerle V, Goettner G, Rogge S, Wilske B. Molecular analysis of decorin-binding protein A (DbpA) reveals five major groups among European Borrelia burgdorferi sensu lato strains with impact for the development of serological assays and indicates lateral gene transfer of the dbpA gene. Int J Med Microbiol. 2006;296 Suppl 40: 250–266. PubMed

Wang G, van Dam AP, Dankert J. Evidence for frequent OspC gene transfer between Borrelia valaisiana sp. nov. and other Lyme disease spirochetes. FEMS Microbiol Lett. 1999;177(2): 289–296. PubMed

Malliaros J, Quinn C, Arnold FH, Pearse MJ, Drane DP, Stewart TJ, et al. Association of antigens to ISCOMATRIX adjuvant using metal chelation leads to improved CTL responses. Vaccine. 2004;22(29–30): 3968–3975. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace