ABD-Derived Protein Blockers of Human IL-17 Receptor A as Non-IgG Alternatives for Modulation of IL-17-Dependent Pro-Inflammatory Axis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-27676A
Czech Health Research Council, Ministry of Health of the Czech Republic
RVO: 86652036
Institutional Research Concept
[BIOCEV CZ.1.05/1.1.00/02.0109]
European Regional Development Fund
18-18079S
Grant Agency of the Czech Republic
PubMed
30304852
PubMed Central
PMC6213189
DOI
10.3390/ijms19103089
PII: ijms19103089
Knihovny.cz E-zdroje
- Klíčová slova
- IL-17 receptor, albumin-binding domain, binding protein, combinatorial library, cytokine,
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- buněčné linie MeSH
- cytokiny metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- interleukin-17 metabolismus MeSH
- konformace proteinů MeSH
- lidé MeSH
- mediátory zánětu metabolismus MeSH
- molekulární modely MeSH
- receptory interleukinu-17 antagonisté a inhibitory chemie metabolismus MeSH
- rekombinantní proteiny metabolismus MeSH
- stabilita proteinů MeSH
- transportní proteiny metabolismus MeSH
- vazba proteinů MeSH
- zánět imunologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- cytokiny MeSH
- IgG Fc-binding protein, Streptococcus MeSH Prohlížeč
- IL17A protein, human MeSH Prohlížeč
- interleukin-17 MeSH
- mediátory zánětu MeSH
- receptory interleukinu-17 MeSH
- rekombinantní proteiny MeSH
- transportní proteiny MeSH
Interleukin 17 (IL-17) and its cognate receptor A (IL-17RA) play a crucial role in Th17 cells-mediated pro-inflammatory pathway and pathogenesis of several autoimmune disorders including psoriasis. IL-17 is mainly produced by activated Th-17 helper cells upon stimulation by IL-23 and, via binding to its receptors, mediates IL-17-driven cell signaling in keratinocytes. Hyper-proliferation of keratinocytes belongs to major clinical manifestations in psoriasis. To modulate IL-17-mediated inflammatory cascade, we generated a unique collection of IL-17RA-targeting protein binders that prevent from binding of human IL-17A cytokine to its cell-surface receptor. To this goal, we used a highly complex combinatorial library derived from scaffold of albumin-binding domain (ABD) of streptococcal protein G, and ribosome display selection, to yield a collection of ABD-derived high-affinity ligands of human IL-17RA, called ARS binders. From 67 analyzed ABD variants, 7 different sequence families were identified. Representatives of these groups competed with human IL-17A for binding to recombinant IL-17RA receptor as well as to IL-17RA-Immunoglobulin G chimera, as tested in enzyme-linked immunosorbent assay (ELISA). Five ARS variants bound to IL-17RA-expressing THP-1 cells and blocked binding of human IL-17 cytokine to the cell surface, as tested by flow cytometry. Three variants exhibited high-affinity binding with a nanomolar Kd value to human keratinocyte HaCaT cells, as measured using Ligand Tracer Green Line. Upon IL-17-stimulated activation, ARS variants inhibited secretion of Gro-α (CXCL1) by normal human skin fibroblasts in vitro. Thus, we identified a novel class of inhibitory ligands that might serve as immunosuppressive IL-17RA-targeted non-IgG protein antagonists.
Zobrazit více v PubMed
Cua D.J., Sherlock J., Chen Y., Murphy C.A., Joyce B., Seymour B., Lucian L., To W., Kwan S., Churakova T., et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–748. doi: 10.1038/nature01355. PubMed DOI
Langrish C.L., Chen Y., Blumenschein W.M., Mattson J., Basham B., Sedgwick J.D., McClanahan T., Kastelein R.A., Cua D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005;201:233–240. doi: 10.1084/jem.20041257. PubMed DOI PMC
Duerr R.H., Taylor K.D., Brant S.R., Rioux J.D., Silverberg M.S., Daly M.J., Steinhart A.H., Abraham C., Regueiro M., Griffiths A., et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–1463. doi: 10.1126/science.1135245. PubMed DOI PMC
Oppmann B., Lesley R., Blom B., Timans J.C., Xu Y., Hunte B., Vega F., Yu N., Wang J., Singh K., et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13:715–725. doi: 10.1016/S1074-7613(00)00070-4. PubMed DOI
Parham C., Chirica M., Timans J., Vaisberg E., Travis M., Cheung J., Pflanz S., Zhang R., Singh K.P., Vega F., et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 2002;168:5699–5708. doi: 10.4049/jimmunol.168.11.5699. PubMed DOI
Zheng Y., Danilenko D.M., Valdez P., Kasman I., Eastham-Anderson J., Wu J., Ouyang W. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445:648–651. doi: 10.1038/nature05505. PubMed DOI
Tang C., Chen S., Qian H., Huang W. Interleukin-23: As a drug target for autoimmune inflammatory diseases. Immunology. 2012;135:112–124. doi: 10.1111/j.1365-2567.2011.03522.x. PubMed DOI PMC
Dungan L.S., Mills K.H. Caspase-1-processed IL-1 family cytokines play a vital role in driving innate IL-17. Cytokine. 2011;56:126–132. doi: 10.1016/j.cyto.2011.07.007. PubMed DOI
Song X., Qian Y. IL-17 family cytokines mediated signaling in the pathogenesis of inflammatory diseases. Cell. Signal. 2013;25:2335–2347. doi: 10.1016/j.cellsig.2013.07.021. PubMed DOI
Iwakura Y., Ishigame H., Saijo S., Nakae S. Functional specialization of interleukin-17 family members. Immunity. 2011;34:149–162. doi: 10.1016/j.immuni.2011.02.012. PubMed DOI
Zou W., Restifo N.P. T(H)17 cells in tumour immunity and immunotherapy. Nat. Rev. Immunol. 2010;10:248–256. doi: 10.1038/nri2742. PubMed DOI PMC
Sutton C.E., Mielke L.A., Mills K.H. IL-17-producing gammadelta T cells and innate lymphoid cells. Eur. J. Immunol. 2012;42:2221–2231. doi: 10.1002/eji.201242569. PubMed DOI
Tonini A., Gualtieri B., Panduri S., Romanelli M., Chiricozzi A. A new class of biologic agents facing the therapeutic paradigm in psoriasis: Anti-IL-23 agents. Expert Opin. Biol. Ther. 2018;18:135–148. doi: 10.1080/14712598.2018.1398729. PubMed DOI
Papp K.A., Griffiths C.E., Gordon K., Lebwohl M., Szapary P.O., Wasfi Y., Chan D., Hsu M.C., Ho V., Ghislain P.D., et al. Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: Final results from 5 years of follow-up. Br. J. Dermatol. 2013;168:844–854. doi: 10.1111/bjd.12214. PubMed DOI
Leonardi C.L., Kimball A.B., Papp K.A., Yeilding N., Guzzo C., Wang Y., Li S., Dooley L.T., Gordon K.B. PHOENIX 1 Study Investigators. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1) Lancet. 2008;371:1665–1674. doi: 10.1016/S0140-6736(08)60725-4. PubMed DOI
Traczewski P., Rudnicka L. Briakinumab for the treatment of plaque psoriasis. BioDrugs. 2012;26:9–20. doi: 10.2165/11595940-000000000-00000. PubMed DOI
Gordon K.B., Langley R.G., Gottlieb A.B., Papp K.A., Krueger G.G., Strober B.E., Williams D.A., Gu Y., Valdes J.M. A phase III, randomized, controlled trial of the fully human IL-12/23 mAb briakinumab in moderate-to-severe psoriasis. J. Investig. Dermatol. 2012;132:304–314. doi: 10.1038/jid.2011.304. PubMed DOI
Reich K., Armstrong A.W., Foley P., Song M., Wasfi Y., Randazzo B., Li S., Shen Y.K., Gordon K.B. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: Results from the phase III, double-blind, placebo- and active comparator-controlled VOYAGE 2 trial. J. Am. Acad. Dermatol. 2017;76:418–431. PubMed
Langley R.G., Tsai T.F., Flavin S., Song M., Randazzo B., Wasfi Y., Jiang J., Li S., Puig L. Efficacy and safety of guselkumab in patients with psoriasis who have an inadequate response to ustekinumab: Results of the randomized, double-blind, phase III NAVIGATE trial. Br. J. Dermatol. 2018;178:114–123. doi: 10.1111/bjd.15750. PubMed DOI
Papp K., Thaci D., Reich K., Riedl E., Langley R.G., Krueger J.G., Gottlieb A.B., Nakagawa H., Bowman E.P., Mehta A., et al. Tildrakizumab (MK-3222), an anti-interleukin-23p19 monoclonal antibody, improves psoriasis in a phase IIb randomized placebo-controlled trial. Br. J. Dermatol. 2015;173:930–939. doi: 10.1111/bjd.13932. PubMed DOI
Reich K., Papp K.A., Blauvelt A., Tyring S.K., Sinclair R., Thaci D., Nograles K., Mehta A., Cichanowitz N., Li Q., et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): Results from two randomised controlled, phase 3 trials. Lancet. 2017;390:276–288. doi: 10.1016/S0140-6736(17)31279-5. PubMed DOI
Krueger J.G., Ferris L.K., Menter A., Wagner F., White A., Visvanathan S., Lalovic B., Aslanyan S., Wang E.E., Hall D., et al. Anti-IL-23A mAb BI 655066 for treatment of moderate-to-severe psoriasis: Safety, efficacy, pharmacokinetics, and biomarker results of a single-rising-dose, randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 2015;136:116–124. doi: 10.1016/j.jaci.2015.01.018. PubMed DOI
Hueber W., Patel D.D., Dryja T., Wright A.M., Koroleva I., Bruin G., Antoni C., Draelos Z., Gold M.H., Psoriasis Study G., et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci. Transl. Med. 2010;2:52ra72. doi: 10.1126/scitranslmed.3001107. PubMed DOI
Patel N.U., Vera N.C., Shealy E.R., Wetzel M., Feldman S.R. A Review of the Use of Secukinumab for Psoriatic Arthritis. Rheumatol. Ther. 2017;4:233–246. doi: 10.1007/s40744-017-0076-0. PubMed DOI PMC
Lubrano E., Perrotta F.M. Secukinumab for ankylosing spondylitis and psoriatic arthritis. Ther. Clin. Risk Manag. 2016;12:1587–1592. doi: 10.2147/TCRM.S100091. PubMed DOI PMC
Mease P.J., van der Heijde D., Ritchlin C.T., Okada M., Cuchacovich R.S., Shuler C.L., Lin C.Y., Braun D.K., Lee C.H., Gladman D.D., et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: Results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 2017;76:79–87. PubMed PMC
Blair H.A. Brodalumab: A Review in Moderate to Severe Plaque Psoriasis. Drugs. 2018;78:495–504. doi: 10.1007/s40265-018-0888-4. PubMed DOI
Papp K.A., Gordon K.B., Langley R.G., Lebwohl M.G., Gottlieb A.B., Rastogi S., Pillai R., Israel R.J. Impact of previous biologic use on the efficacy and safety of brodalumab and ustekinumab in patients with moderate-to-severe plaque psoriasis: Integrated analysis of the randomized controlled trials AMAGINE-2 and AMAGINE-3. Br. J. Dermatol. 2018;179:320–328. doi: 10.1111/bjd.16464. PubMed DOI
Zaretsky M., Etzyoni R., Kaye J., Sklair-Tavron L., Aharoni A. Directed evolution of a soluble human IL-17A receptor for the inhibition of psoriasis plaque formation in a mouse model. Chem. Biol. 2013;20:202–211. doi: 10.1016/j.chembiol.2012.11.012. PubMed DOI
Skrlec K., Strukelj B., Berlec A. Non-immunoglobulin scaffolds: A focus on their targets. Trends Biotechnol. 2015;33:408–418. doi: 10.1016/j.tibtech.2015.03.012. PubMed DOI
Martin H.L., Bedford R., Heseltine S.J., Tang A.A., Haza K.Z., Rao A., McPherson M.J., Tomlinson D.C. Non-immunoglobulin scaffold proteins: Precision tools for studying protein-protein interactions in cancer. New Biotechnol. 2018;45:28–35. doi: 10.1016/j.nbt.2018.02.008. PubMed DOI
Ahmad J.N., Li J., Biedermannova L., Kuchar M., Sipova H., Semeradtova A., Cerny J., Petrokova H., Mikulecky P., Polinek J., et al. Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein G. Proteins. 2012;80:774–789. doi: 10.1002/prot.23234. PubMed DOI
Nilvebrant J., Astrand M., Lofblom J., Hober S. Development and characterization of small bispecific albumin-binding domains with high affinity for ErbB3. Cell. Mol. Life Sci. 2013;70:3973–3985. doi: 10.1007/s00018-013-1370-9. PubMed DOI PMC
Nilvebrant J., Hober S. The albumin-binding domain as a scaffold for protein engineering. Comput. Struct. Biotechnol. J. 2013;6:e201303009. doi: 10.5936/csbj.201303009. PubMed DOI PMC
Kuchar M., Vankova L., Petrokova H., Cerny J., Osicka R., Pelak O., Sipova H., Schneider B., Homola J., Sebo P., et al. Human interleukin-23 receptor antagonists derived from an albumin-binding domain scaffold inhibit IL-23-dependent ex vivo expansion of IL-17-producing T-cells. Proteins. 2014;82:975–989. doi: 10.1002/prot.24472. PubMed DOI PMC
Mareckova L., Petrokova H., Osicka R., Kuchar M., Maly P. Novel binders derived from an albumin-binding domain scaffold targeting human prostate secretory protein 94 (PSP94) Protein Cell. 2015;6:774–779. doi: 10.1007/s13238-015-0194-9. PubMed DOI PMC
Zadravec P., Mareckova L., Petrokova H., Hodnik V., Perisic Nanut M., Anderluh G., Strukelj B., Maly P., Berlec A. Development of Recombinant Lactococcus lactis Displaying Albumin-Binding Domain Variants against Shiga Toxin 1 B Subunit. PLoS ONE. 2016;11:e0162625. doi: 10.1371/journal.pone.0162625. PubMed DOI PMC
Krizova L., Kuchar M., Petrokova H., Osicka R., Hlavnickova M., Pelak O., Cerny J., Kalina T., Maly P. p19-targeted ABD-derived protein variants inhibit IL-23 binding and exert suppressive control over IL-23-stimulated expansion of primary human IL-17+ T-cells. Autoimmunity. 2017;50:102–113. doi: 10.1080/08916934.2016.1272598. PubMed DOI
Yao Z., Spriggs M.K., Derry J.M., Strockbine L., Park L.S., VandenBos T., Zappone J.D., Painter S.L., Armitage R.J. Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine. 1997;9:794–800. doi: 10.1006/cyto.1997.0240. PubMed DOI
Cho K.A., Suh J.W., Lee K.H., Kang J.L., Woo S.Y. IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1beta by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int. Immunol. 2012;24:147–158. doi: 10.1093/intimm/dxr110. PubMed DOI
Goetsch L., Haeuw J.F., Champion T., Lacheny C., N’Guyen T., Beck A., Corvaia N. Identification of B- and T-cell epitopes of BB, a carrier protein derived from the G protein of Streptococcus strain G148. Clin. Diagn. Lab. Immunol. 2003;10:125–132. doi: 10.1128/CDLI.10.1.125-132.2003. PubMed DOI PMC
Liu S., Song X., Chrunyk B.A., Shanker S., Hoth L.R., Marr E.S., Griffor M.C. Crystal structures of interleukin 17A and its complex with IL-17 receptor A. Nat. Commun. 2013;4:1888. doi: 10.1038/ncomms2880. PubMed DOI
Sarra M., Pallone F., Macdonald T.T., Monteleone G. IL-23/IL-17 axis in IBD. Inflamm. Bowel Dis. 2010;16:1808–1813. doi: 10.1002/ibd.21248. PubMed DOI
West N.R., McCuaig S., Franchini F., Powrie F. Emerging cytokine networks in colorectal cancer. Nat. Rev. Immunol. 2015;15:615–629. doi: 10.1038/nri3896. PubMed DOI
Skrlec K., Zadravec P., Hlavnickova M., Kuchar M., Vankova L., Petrokova H., Krizova L., Cerny J., Berlec A., Maly P. p19-Targeting ILP Protein Blockers of IL-23/Th-17 Pro-Inflammatory Axis Displayed on Engineered Bacteria of Food Origin. Int. J. Mol. Sci. 2018;19:1933. doi: 10.3390/ijms19071933. PubMed DOI PMC
Schetter A.J., Nguyen G.H., Bowman E.D., Mathe E.A., Yuen S.T., Hawkes J.E., Croce C.M., Leung S.Y., Harris C.C. Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma. Clin. Cancer Res. 2009;15:5878–5887. doi: 10.1158/1078-0432.CCR-09-0627. PubMed DOI PMC
Wang L., Yi T., Zhang W., Pardoll D.M., Yu H. IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res. 2010;70:10112–10120. doi: 10.1158/0008-5472.CAN-10-0775. PubMed DOI PMC
He D., Li H., Yusuf N., Elmets C.A., Athar M., Katiyar S.K., Xu H. IL-17 mediated inflammation promotes tumor growth and progression in the skin. PLoS ONE. 2012;7:e32126. doi: 10.1371/journal.pone.0032126. PubMed DOI PMC
Sali A., Blundell T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Johansson M.U., Frick I.M., Nilsson H., Kraulis P.J., Hober S., Jonasson P., Linhult M., Nygren P.A., Uhlen M., Bjorck L., et al. Structure, specificity, and mode of interaction for bacterial albumin-binding modules. J. Biol. Chem. 2002;277:8114–8120. doi: 10.1074/jbc.M109943200. PubMed DOI
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Soding J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Kozakov D., Beglov D., Bohnuud T., Mottarella S.E., Xia B., Hall D.R., Vajda S. How good is automated protein docking? Proteins. 2013;81:2159–2166. doi: 10.1002/prot.24403. PubMed DOI PMC
Kozakov D., Brenke R., Comeau S.R., Vajda S. PIPER: An FFT-based protein docking program with pairwise potentials. Proteins. 2006;65:392–406. doi: 10.1002/prot.21117. PubMed DOI
Eastman P., Pande V.S. OpenMM: A Hardware Independent Framework for Molecular Simulations. Comput. Sci. Eng. 2015;12:34–39. doi: 10.1109/MCSE.2010.27. PubMed DOI PMC
Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A.E., Berendsen H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005;26:1701–1718. doi: 10.1002/jcc.20291. PubMed DOI
Human IL-22 receptor-targeted small protein antagonist suppress murine DSS-induced colitis
Targeting Human Thrombus by Liposomes Modified with Anti-Fibrin Protein Binders