Development of Recombinant Lactococcus lactis Displaying Albumin-Binding Domain Variants against Shiga Toxin 1 B Subunit
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27606705
PubMed Central
PMC5015993
DOI
10.1371/journal.pone.0162625
PII: PONE-D-16-24422
Knihovny.cz E-zdroje
- MeSH
- albuminy metabolismus MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- ELISA MeSH
- HeLa buňky MeSH
- imobilizované proteiny metabolismus MeSH
- Lactococcus lactis metabolismus MeSH
- lidé MeSH
- metody zobrazení buněčného povrchu MeSH
- podjednotky proteinů metabolismus MeSH
- povrchová plasmonová rezonance MeSH
- proteinové domény MeSH
- průtoková cytometrie MeSH
- rekombinace genetická genetika MeSH
- rekombinantní proteiny metabolismus MeSH
- ribozomy metabolismus MeSH
- sekvenční homologie aminokyselin MeSH
- shiga toxin 1 chemie metabolismus MeSH
- transport proteinů MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- albuminy MeSH
- imobilizované proteiny MeSH
- podjednotky proteinů MeSH
- rekombinantní proteiny MeSH
- shiga toxin 1 MeSH
Infections with shiga toxin-producing bacteria, like enterohemorrhagic Escherichia coli and Shigella dysenteriae, represent a serious medical problem. No specific and effective treatment is available for patients with these infections, creating a need for the development of new therapies. Recombinant lactic acid bacterium Lactococcus lactis was engineered to bind Shiga toxin by displaying novel designed albumin binding domains (ABD) against Shiga toxin 1 B subunit (Stx1B) on their surface. Functional recombinant Stx1B was produced in Escherichia coli and used as a target for selection of 17 different ABD variants (named S1B) from the ABD scaffold-derived high-complex combinatorial library in combination with a five-round ribosome display. Two most promising S1Bs (S1B22 and S1B26) were characterized into more details by ELISA, surface plasmon resonance and microscale thermophoresis. Addition of S1Bs changed the subcellular distribution of Stx1B, completely eliminating it from Golgi apparatus most likely by interfering with its retrograde transport. All ABD variants were successfully displayed on the surface of L. lactis by fusing to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA. Binding of Stx1B by engineered lactococcal cells was confirmed using flow cytometry and whole cell ELISA. Lactic acid bacteria prepared in this study are potentially useful for the removal of Shiga toxin from human intestine.
Department of Biotechnology Jožef Stefan Institute Jamova 39 SI 1000 Ljubljana Slovenia
National Institute of Chemistry Hajdrihova 19 1000 Ljubljana Slovenia
Zobrazit více v PubMed
Paton JC, Paton AW. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev. 1998;11(3):450–79. , PubMed PMC
O`Brien AD, Holmes RK. Shiga and Shiga-Like Toxins. Microbiol Rev. 1987;51(2):206–20. PubMed PMC
Johannes L, Römer W. Shiga toxins—from cell biology to biomedical applications. Nat Rev Microbiol. 2010. 10.1038/nrmicro2279 PubMed DOI
Keir LS, Marks SD, Kim JJ. Shigatoxin-associated hemolytic uremic syndrome: current molecular mechanisms and future therapies. Drug Des Devel Ther. 2012;6:195–208. . PubMed PMC
Sandvig K, van Deurs B. Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol Rev. 1996;76(4):949–66. . PubMed
Sandvig K. Shiga toxins. Toxicon. 2001;39(11):1629–35. 10.1016/S0041-0101(01)00150-7 . PubMed DOI
Melton-Celsa AR, O'Brien AD. New Therapeutic Developments against Shiga Toxin-Producing Escherichia coli. Microbiol Spectr. 2014;2(5). 10.1128/microbiolspec.EHEC-0013-2013 . PubMed DOI
Rahal EA, Fadlallah SM, Nassar FJ, Kazzi N, Matar GM. Approaches to treatment of emerging Shiga toxin-producing Escherichia coli infections highlighting the O104:H4 serotype. Front Cell Infect Microbiol. 2015;5:24 10.3389/fcimb.2015.00024 . PubMed DOI PMC
Skrlec K, Strukelj B, Berlec A. Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol. 2015;33(7):408–18. 10.1016/j.tibtech.2015.03.012 . PubMed DOI
Gebauer M, Skerra A. Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol. 2009;13(3):245–55. 10.1016/j.cbpa.2009.04.627 . PubMed DOI
Ahmad JN, Li J, Biedermannova L, Kuchar M, Sipova H, Semeradtova A, et al. Novel high-affinity binders of human interferon gamma derived from albumin-binding domain of protein G. Proteins. 2012;80(3):774–89. 10.1002/prot.23234 . PubMed DOI
Kuchar M, Vankova L, Petrokova H, Cerny J, Osicka R, Pelak O, et al. Human interleukin-23 receptor antagonists derived from an albumin-binding domain scaffold inhibit IL-23-dependent ex vivo expansion of IL-17-producing T-cells. Proteins. 2014;82(6):975–89. 10.1002/prot.24472 . PubMed DOI PMC
Mareckova L, Petrokova H, Osicka R, Kuchar M, Maly P. Novel binders derived from an albumin-binding domain scaffold targeting human prostate secretory protein 94 (PSP94). Protein Cell. 2015. 10.1007/s13238-015-0194-9 . PubMed DOI PMC
Mohsin M, Guenther S, Schierack P, Tedin K, Wieler LH. Probiotic Escherichia coli Nissle 1917 reduces growth, Shiga toxin expression, release and thus cytotoxicity of enterohemorrhagic Escherichia coli. Int J Med Microbiol. 2015;305(1):20–6. 10.1016/j.ijmm.2014.10.003 . PubMed DOI
Reissbrodt R, Hammes WP, dal Bello F, Prager R, Fruth A, Hantke K, et al. Inhibition of growth of Shiga toxin-producing Escherichia coli by nonpathogenic Escherichia coli. FEMS Microbiol Lett. 2009;290(1):62–9. 10.1111/j.1574-6968.2008.01405.x . PubMed DOI
Ogawa M, Shimizu K, Nomoto K, Tanaka R, Hamabata T, Yamasaki S, et al. Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid. Int J Food Microbiol. 2001;68(1–2):135–40. . PubMed
Ravnikar M, Strukelj B, Obermajer N, Lunder M, Berlec A. Engineered Lactic Acid Bacterium Lactococcus lactis Capable of Binding Antibodies and Tumor Necrosis Factor Alpha. Appl Environ Microbiol. 2010;76(20):6928–32. 10.1128/aem.00190-10 PubMed DOI PMC
Zadravec P, Strukelj B, Berlec A. Improvement of LysM-mediated surface display of designed ankyrin repeat proteins (DARPins) in recombinant and nonrecombinant strains of Lactococcus lactis and Lactobacillus Species. Appl Environ Microbiol. 2015;81(6):2098–106. 10.1128/AEM.03694-14 . PubMed DOI PMC
Zadravec P, Strukelj B, Berlec A. Heterologous surface display on lactic acid bacteria: non-GMO alternative? Bioengineered. 2015;6(3):179–83. 10.1080/21655979.2015.1040956 . PubMed DOI PMC
Steen A. Cell Wall Attachment of a Widely Distributed Peptidoglycan Binding Domain Is Hindered by Cell Wall Constituents. J Biol Chem. 2003;278(26):23874–81. 10.1074/jbc.M211055200 PubMed DOI
Buist G, Kok J, Leenhouts KJ, Dabrowska M, Venema G, Haandrikman AJ. Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol. 1995;177(6):1554–63. . PubMed PMC
Steen A, Buist G, Horsburgh GJ, Venema G, Kuipers OP, Foster SJ, et al. AcmA of Lactococcus lactis is an N-acetylglucosaminidase with an optimal number of LysM domains for proper functioning. FEBS J. 2005;272(11):2854–68. 10.1111/j.1742-4658.2005.04706.x . PubMed DOI
Paton AW, Morona R, Paton JC. A new biological agent for treatment of Shiga toxigenic Escherichia coli infections and dysentery in humans. Nat Med. 2000;6(3):265–70. PubMed
Pinyon RA, Paton JC, Paton AW, Botten JA, Morona R. Refinement of a therapeutic Shiga toxin-binding probiotic for human trials. J Infect Dis. 2004;189(9):1547–55. 10.1086/383417 . PubMed DOI
Bondos SE, Bicknell A. Detection and prevention of protein aggregation before, during, and after purification. Anal Biochem. 2003;316(2):223–31. 10.1016/S0003-2697(03)00059-9 . PubMed DOI
Tsumoto K, Ejima D, Kumagai I, Arakawa T. Practical considerations in refolding proteins from inclusion bodies. Protein Expr Purif. 2003;28(1):1–8. 10.1016/S1046-5928(02)00641-1 . PubMed DOI
Oneda H, Inouye K. Refolding and recovery of recombinant human matrix metalloproteinase 7 (matrilysin) from inclusion bodies expressed by Escherichia coli. J Biochem. 1999;126(5):905–11. . PubMed
de Ruyter PG, Kuipers OP, de Vos WM. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol. 1996;62(10):3662–7. . PubMed PMC
Kuipers OP, Beerthuyzen MM, Siezen RJ, De Vos WM. Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem. 1993;216(1):281–91. . PubMed
Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM. Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol. 1998;64(1):15–21. 10.1016/S0168-1656(98)00100-X DOI
Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol. 2005;68(6):705–17. 10.1007/s00253-005-0107-6 PubMed DOI
Ashkenazi S, Cleary TG. Rapid method to detect shiga toxin and shiga-like toxin I based on binding to globotriosyl ceramide (Gb3), their natural receptor. J Clin Microbiol. 1989;27(6):1145–50. . PubMed PMC
Berlec A, Malovrh T, Zadravec P, Steyer A, Ravnikar M, Sabotic J, et al. Expression of a hepatitis A virus antigen in Lactococcus lactis and Escherichia coli and evaluation of its immunogenicity. Appl Microbiol Biotechnol. 2013;97(10):4333–42. 10.1007/s00253-013-4722-3 . PubMed DOI
Berlec A, Zadravec P, Jevnikar Z, Strukelj B. Identification of candidate carrier proteins for surface display on Lactococcus lactis by theoretical and experimental analyses of the surface proteome. Appl Environ Microbiol. 2011;77(4):1292–300. 10.1128/AEM.02102-10 . PubMed DOI PMC
Zadravec P, Mavric A, Bogovic Matijasic B, Strukelj B, Berlec A. Engineering BmpA as a carrier for surface display of IgG-binding domain on Lactococcus lactis. Protein Eng Des Sel. 2014;27(1):21–7. 10.1093/protein/gzt059 . PubMed DOI
Lindholm A, Smeds A, Palva A. Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis. Appl Environ Microbiol. 2004;70(4):2061–71. . PubMed PMC
Kim JH, Lingwood CA, Williams DB, Furuya W, Manolson MF, Grinstein S. Dynamic measurement of the pH of the Golgi complex in living cells using retrograde transport of the verotoxin receptor. J Cell Biol. 1996;134(6):1387–99. . PubMed PMC
Neri P, Shigemori N, Hamada-Tsutsumi S, Tsukamoto K, Arimitsu H, Shimizu T, et al. Single chain variable fragment antibodies against Shiga toxins isolated from a human antibody phage display library. Vaccine. 2011;29(33):5340–6. 10.1016/j.vaccine.2011.05.093 . PubMed DOI
Lipovsek D, Pluckthun A. In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods. 2004;290(1–2):51–67. 10.1016/j.jim.2004.04.008 . PubMed DOI
Richter A, Eggenstein E, Skerra A. Anticalins: exploiting a non-Ig scaffold with hypervariable loops for the engineering of binding proteins. FEBS Lett. 2014;588(2):213–8. 10.1016/j.febslet.2013.11.006 . PubMed DOI
Dieye Y, Usai S, Clier F, Gruss A, Piard JC. Design of a protein-targeting system for lactic acid bacteria. J Bacteriol. 2001;183(14):4157–66. 10.1128/JB.183.14.4157-4166.2001 . PubMed DOI PMC
Targeting Human Thrombus by Liposomes Modified with Anti-Fibrin Protein Binders