Antibiotic-resistant Escherichia coli from treated municipal wastewaters and Black-headed Gull nestlings on the recipient river
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39399230
PubMed Central
PMC11470789
DOI
10.1016/j.onehlt.2024.100901
PII: S2352-7714(24)00227-1
Knihovny.cz E-zdroje
- Klíčová slova
- Enterobacterales, Environment, Whole-genome sequencing, Wild birds,
- Publikační typ
- časopisecké články MeSH
Wastewaters belong among the most important sources of environmental pollution, including antibiotic-resistant bacteria. The aim of the study was to evaluate treated wastewaters as a possible transmission pathway for bacterial colonisation of gulls occupying the receiving river. A collection of antibiotic-resistant Escherichia coli originating both from treated municipal wastewaters discharged to the river Svratka (Czech Republic) and nestlings of Black-headed Gull (Chroicocephalus ridibundus) living 35 km downstream of the outlet was obtained using selective cultivation. Isolates were further characterised by various phenotyping and genotyping methods. From a total of 670 E. coli isolates (450 from effluents, 220 from gulls), 86 isolates (41 from effluents, 45 from gulls) showed identical antibiotic resistance phenotype and genotype and were further analysed for clonal relatedness using pulsed-field gel electrophoresis (PFGE). Despite the overall high diversity of the isolates, 21 isolates from both sources showed similar PFGE profiles. Isolates belonging to epidemiologically important sequence types (ST131, 15 isolates; ST23, three isolates) were subjected to whole-genome sequencing. Subsequent phylogenetic analysis did not reveal any close clonal relationship between the isolates from the effluents and gulls' nestlings with the closest strains showing 90 SNPs difference. Although our study did not provide direct evidence of transmission of antibiotic-resistant E. coli to wild gulls via treated wastewaters, we observed gull chicks as carriers of diverse multi-resistant E. coli, including high-risk clones, posing risk of further bacterial contamination of the surrounding environment.
Biomedical Center Faculty of Medicine Charles University Pilsen Czech Republic
Central European Institute of Technology University of Veterinary Sciences Brno Brno Czech Republic
Zobrazit více v PubMed
Rizzo L., Manaia C., Merlin C., Schwartz T., Dagot C., Ploy M.C., Michael I., Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci. Total Environ. 2013;447:345–360. doi: 10.1016/j.scitotenv.2013.01.032. PubMed DOI
Uluseker C., Kaster K.M., Thorsen K., Basiry D., Shobana S., Jain M., Kumar G., Kommedal R., Pala-Ozkok I. A review on occurrence and spread of antibiotic resistance in wastewaters and in wastewater treatment plants: mechanisms and perspectives. Front. Microbiol. 2021;12 doi: 10.3389/fmicb.2021.717809. PubMed DOI PMC
Berglund B. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol. Epidemiol. 2015;5:28564. doi: 10.3402/iee.v5.28564. PubMed DOI PMC
Bouki C., Venieri D., Diamadopoulos E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: a review. Ecotoxicol. Environ. Saf. 2013;91:1–9. doi: 10.1016/j.ecoenv.2013.01.016. PubMed DOI
Quintela-Baluja M., Abouelnaga M., Romalde J., Su J.Q., Yu Y., Gomez-Lopez M., Smets B., Zhu Y.G., Graham D.W. Spatial ecology of a wastewater network defines the antibiotic resistance genes in downstream receiving waters. Water Res. 2019;162:347–357. doi: 10.1016/j.watres.2019.06.075. PubMed DOI PMC
Herrig I., Fleischmann S., Regnery J., Wesp J., Reifferscheid G., Manz W. Prevalence and seasonal dynamics of blaCTX-M antibiotic resistance genes and fecal indicator organisms in the lower Lahn River, Germany. PLoS One. 2020;15 doi: 10.1371/journal.pone.0232289. PubMed DOI PMC
Varela A.R., Manageiro V., Ferreira E., Guimarães M.A., Da Costa P.M., Caniça M., Manaia C.M. Molecular evidence of the close relatedness of clinical, gull and wastewater isolates of quinolone-resistant Escherichia coli. J. Glob. Antimicrob. Resist. 2015;3:286–289. doi: 10.1016/j.jgar.2015.07.008. PubMed DOI
Wang J., Ma Z.B., Zeng Z.L., Yang X.W., Huang Y., Liu J.H. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool. Res. 2017;38:55–80. doi: 10.24272/j.issn.2095-8137.2017.003. PubMed DOI PMC
Smith G.C., Carlile N. Methods for population control within a silver Gull Colony. Wildl. Res. 1993;20:219–225. doi: 10.1071/WR9930219. DOI
Masarikova M., Manga I., Cizek A., Dolejska M., Oravcova V., Myskova P., Karpiskova R., Literak I. Salmonella enterica resistant to antimicrobials in wastewater effluents and black-headed gulls in the Czech Republic, 2012. Sci. Total Environ. 2016;542:102–107. doi: 10.1016/j.scitotenv.2015.10.069. PubMed DOI
Oravcova V., Mihalcin M., Zakova J., Pospisilova L., Masarikova M., Literak I. Vancomycin-resistant enterococci with vanA gene in treated municipal wastewater and their association with human hospital strains. Sci. Total Environ. 2017;609:633–643. doi: 10.1016/j.scitotenv.2017.07.121. PubMed DOI
CLSI, Clinical and Laboratory Standards Institute . 2015. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. CLSI Document M100-S25. Wayne, PA.
Clermont O., Christenson J.K., Denamur E., Gordon D.M. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013;5:58–65. doi: 10.1111/1758-2229.12019. PubMed DOI
Carattoli A., Bertini A., Villa L., Falbo V., Hopkins K.L., Threlfall E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods. 2005;63:219–228. doi: 10.1016/j.mimet.2005.03.018. PubMed DOI
Centers for Disease Control and Prevention . US Department of Health and Human Services; Atlanta, GA: 2004. One-Day (24–28 H) Standardized Laboratory Protocol for Molecular Subtyping of Escherichia coli o157:h7, Non-typhoidal Salmonella Serotypes, and Shigella sonnei by Pulsed Field Gel Electrophoresis (PFGE). Training Manual.
Carriço J.A., Pinto F.R., Simas C., Nunes S., Sousa N.G., Frazão N., De Lencastre H., Almeida J.S. Assessment of band-based similarity coefficients for automatic type and subtype classification of microbial isolates analyzed by pulsed-field gel electrophoresis. J. Clin. Microbiol. 2005;43:5483–5490. doi: 10.1128/JCM.43.11.5483-5490.2005. PubMed DOI PMC
Nascimento M., Sousa A., Ramirez M., Francisco A.P., Carriço J.A., Vaz C. PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics. 2017;33:128–129. doi: 10.1093/bioinformatics/btw582. PubMed DOI
Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler G., Alekseyev M.A., Pevzner P.A. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Larsen M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;67:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC
Carattoli A., Zankari E., Garciá-Fernández A., Larsen M.V., Lund O., Villa L., Aarestrup F.M., Hasman H. In silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC
Larsen M.V., Cosentino S., Rasmussen S., Friis C., Hasman H., Marvig R.L., Jelsbak L., Sicheritz-Pontén T., Ussery D.W., Aarestrup F.M., Lund O. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012;50:1355–1361. doi: 10.1128/JCM.06094-11. PubMed DOI PMC
Beghain J., Bridier-Nahmias A., Le Nagard H., Denamur E., Clermont O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb. Genom. 2018;4 doi: 10.1099/mgen.0.000192. PubMed DOI PMC
Roer L., Tchesnokova V., Allesøe R., Muradova M., Chattopadhyay S., Ahrenfeldt J., Thomsen M.C.F., Lund O., Hansen F., Hammerum A.M., Sokurenko E., Hasman H. Development of a web tool for Escherichia coli subtyping based on fimH alleles. J. Clin. Microbiol. 2017;55:2538–2543. doi: 10.1128/jcm.00737-17. PubMed DOI PMC
Johnson J.R., Porter S., Thuras P., Castanheira M. The pandemic H30 subclone of sequence type 131 (ST131) as the leading cause of multidrug-resistant Escherichia coli infections in the United States (2011−2012) Open Forum Infect. Dis. 2017;4 doi: 10.1093/ofid/ofx089. PubMed DOI PMC
Villa L., García-Fernández A., Fortini D., Carattoli A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J. Antimicrob. Chemother. 2010;65:2518–2529. doi: 10.1093/jac/dkq347. PubMed DOI
Langmead B., Salzberg S.L. Fast gapped-read alignment with bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Koboldt D.C., Zhang Q., Larson D.E., Shen D., McLellan M.D., Lin L., Miller C.A., Mardis E.R., Ding L., Wilson R.K. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–576. doi: 10.1101/gr.129684.111. PubMed DOI PMC
Pages H., Aboyoun P., Gentleman R., Debroy S. Biostrings: Efficient Manipulation of Biological Strings. R Package Version 2.50.2. 2019. https://bioconductor.org/packages/release/bioc/html/Biostrings.html
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Darriba D., Taboada G.L., Doallo R., Posada D. JModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC
Letunic I., Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47 doi: 10.1093/nar/gkz239. PubMed DOI PMC
Caltagirone M., Nucleo E., Spalla M., Zara F., Novazzi F., Marchetti V.M., Piazza A., Bitar I., De Cicco M., Paolucci S., Pilla G., Migliavacca R., Pagani L. Occurrence of extended spectrum β-lactamases, KPC-type, and MCR-1.2-producing Enterobacteriaceae from wells, river water, and wastewater treatment plants in Oltrepò Pavese area, northern Italy. Front. Microbiol. 2017;8:2232. doi: 10.3389/fmicb.2017.02232. PubMed DOI PMC
Dolejska M., Frolkova P., Florek M., Jamborova I., Purgertova M., Kutilova I., Cizek A., Guenther S., Literak I. CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. J. Antimicrob. Chemother. 2011;66:2784–2790. doi: 10.1093/jac/dkr363. PubMed DOI
Verburg I., García-Cobos S., Leal L.H., Waar K., Friedrich A.W., Schmitt H. Abundance and antimicrobial resistance of three bacterial species along a complete wastewater pathway. Microorganisms. 2019;7:312. doi: 10.3390/microorganisms7090312. PubMed DOI PMC
Kutilova I., Medvecky M., Leekitcharoenphon P., Munk P., Masarikova M., Davidova-Gerzova L., Jamborova I., Bortolaia V., Pamp S.J., Dolejska M. Extended-spectrum beta-lactamase-producing Escherichia coli and antimicrobial resistance in municipal and hospital wastewaters in Czech Republic: culture-based and metagenomic approaches. Environ. Res. 2021;193 doi: 10.1016/j.envres.2020.110487. PubMed DOI
Dolejska M., Masarikova M., Dobiasova H., Jamborova I., Karpiskova R., Havlicek M., Carlile N., Priddel D., Cizek A., Literak I. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on five islands, Australia. J. Antimicrob. Chemother. 2016;71:63–70. doi: 10.1093/jac/dkv306. PubMed DOI PMC
Literak I., Dolejska M., Janoszowska D., Hrusakova J., Meissner W., Rzyska H., Bzoma S., Cizek A. Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum beta-lactamase and QnrS, in waterbirds on the Baltic Sea coast of Poland. Appl. Environ. Microbiol. 2010;76:8126–8134. doi: 10.1128/AEM.01446-10. PubMed DOI PMC
Literak I., Manga I., Wojczulanis-Jakubas K., Chroma M., Jamborova I., Dobiasova H., Sedlakova M.H., Cizek A. Enterobacter cloacae with a novel variant of ACT AmpC beta-lactamase originating from glaucous gull (Larus hyperboreus) in Svalbard. Vet. Microbiol. 2014;171:432–435. doi: 10.1016/j.vetmic.2014.02.015. PubMed DOI
Vittecoq M., Godreuil S., Prugnolle F., Durand P., Brazier L., Renaud N., Arnal A., Aberkane S., Jean-Pierre H., Gauthier-Clerc M., Thomas F., Renaud F. REVIEW: antimicrobial resistance in wildlife. J. Appl. Ecol. 2016;53:519–529. doi: 10.1111/1365-2664.12596. DOI
Stedt J., Bonnedahl J., Hernandez J., McMahon B.J., Hasan B., Olsen B., Drobni M., Waldenström J. Antibiotic resistance patterns in Escherichia coli from gulls in nine European countries. Infect Ecol. Epidemiol. 2014;4:21565. doi: 10.3402/iee.v4.21565. PubMed DOI PMC
Atterby C., Börjesson S., Ny S., Järhult J.D., Byfors S., Bonnedahl J. ESBL-producing Escherichia coli in Swedish gulls—a case of environmental pollution from humans? PLoS One. 2017;12 doi: 10.1371/journal.pone.0190380. PubMed DOI PMC
Dolejska M., Cizek A., Literak I. High prevalence of antimicrobial-resistant genes and integrons in Escherichia coli isolates from black-headed gulls in the Czech Republic. J. Appl. Microbiol. 2007;103:11–19. doi: 10.1111/j.1365-2672.2006.03241.x. PubMed DOI
Dolejska M., Bierosova B., Kohoutova L., Literak I., Cizek A. Antibiotic-resistant Salmonella and Escherichia coli isolates with integrons and extended-spectrum beta-lactamases in surface water and sympatric black-headed gulls. J. Appl. Microbiol. 2009;106:1941–1950. doi: 10.1111/j.1365-2672.2009.04155.x. PubMed DOI
Nicolas-Chanoine M.H., Bertrand X., Madec J.Y. Escherichia coli ST131, an intriguing clonal group. Clin. Microbiol. Rev. 2014;27:543–574. doi: 10.1128/CMR.00125-13. PubMed DOI PMC
Banerjee R., Johnson J.R. A new clone sweeps clean: the enigmatic emergence of Escherichia coli sequence type 131. Antimicrob. Agents Chemother. 2014;58:4997–5004. doi: 10.1128/AAC.02824-14. PubMed DOI PMC
Mathers A.J., Peirano G., Pitout J.D.D. The role of epidemic resistance plasmids and international high- risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015;28:565–591. doi: 10.1128/CMR.00116-14. PubMed DOI PMC
Jamborova I., Johnston B.D., Papousek I., Kachlikova K., Micenkova L., Clabots C., Skalova A., Chudejova K., Dolejska M., Literak I., Johnson J.R. Extensive genetic commonality among wildlife, wastewater, community, and nosocomial isolates of Escherichia coli sequence type 131 (H30R1 and H30Rx subclones) that carry blaCTX-M-27 or blaCTX-M-15. Antimicrob. Agents Chemother. 2018;62 doi: 10.1128/AAC.00519-18. e00519–18. PubMed DOI PMC
Riley L.W. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect. 2014;20:380–390. doi: 10.1111/1469-0691.12646. PubMed DOI
Hasan B., Melhus Å., Sandegren L., Alam M., Olsen B. The gull (Chroicocephalus brunnicephalus) as an environmental bioindicator and reservoir for antibiotic resistance on the coastlines of the bay of Bengal. Microb. Drug Resist. 2014;20:466–471. doi: 10.1089/mdr.2013.0233. PubMed DOI