Genomic analysis of extended-spectrum beta-lactamase-producing E. coli from Czech diary calves and their caretakers
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
40144518
PubMed Central
PMC11938843
DOI
10.3389/fvets.2025.1552297
Knihovny.cz E-resources
- Keywords
- ESBL, Escherichia coli, antimicrobial resistance, dairy cattle, whole-genome sequencing, zoonotic transmission,
- Publication type
- Journal Article MeSH
INTRODUCTION: The increasing prevalence of antimicrobial resistance in livestock, particularly the dissemination of extended-spectrum beta-lactamase-producing Escherichia coli, poses a significant zoonotic and public health risk. This study investigates the genomic characteristics of cefotaxime-resistant E. coli isolates from dairy calves across 23 Czech farms and their caretakers. MATERIALS AND METHODS: Bacteriological cultivation on McConkey agar with cefotaxime was used for their isolation, susceptibility to selected antibiotics was determined by disc diffusion method, production of extended-spectrum beta-lactamases (ESBL) was demonstrated by double disc synergy test. The PCR was applied to confirm the presence of selected genes encoding resistance to some beta-lactams and genes encoding resistance to quinolones carried on plasmids. Using whole-genome sequencing, we evaluated resistance genotypes, sequence types, serotypes, plasmid replicons, and virulence genes. RESULTS AND DISCUSSION: Among 266 rectal samples obtained from the calves, 128 (48%) harbored cefotaxime-resistant E. coli. Whole-genome analysis revealed blaCTX-M genes in 91% (116/128) of isolates, with bla CTX-M-14 (44%) and bla CTX-M-1 (34%) being the dominant variants. Other beta-lactamase gene blaTEM-1b was found in 40% (51/128) of isolates. Notably, no cephamycin resistance genes have been identified. The plasmid-mediated quinolone resistance (PMQR) gene qnrS1 was present at 21% (27/128) of isolates. The colistin resistance gene mcr-1 was found in a single ST2325 isolate. Sequence typing revealed significant clonal diversity, with 21 different STs detected among 68 sequenced isolates. ST10 was the most prevalent (27%), followed by ST69 (12%), ST29 (7%) and others. The phylogenetic distribution showed a predominance of commensal groups A (54%) and B1 (21%). The most common serotypes included O101:H9 (21%), O15:H18 (12%), H12, and O70:H11 (7%). Analysis of plasmid content revealed a complex distribution of 18 distinct plasmid replicon types, especially IncF, followed by Col-type and IncI1-type plasmids. Cross-species transmission was indicated by the detection of clonal strains shared between calves and caretakers, notably ST10-O101:H9 and ST34-O68:H30. The prevalence of high-risk clones and the presence of mobile resistance elements underscore the urgent need for stringent monitoring, antimicrobial stewardship, and improved biosecurity measures in livestock environments like increased caution and personal hygiene of animal handlers to mitigate the spread of resistant E. coli between animals and humans.
CEITEC VETUNI Brno University of Veterinary Sciences Brno Brno Czechia
Department of Microbiology Faculty of Medicine in Pilsen Charles University Pilsen Czechia
See more in PubMed
Gelalcha BD, Gelgie AE, Dego OK. Prevalence and antimicrobial resistance profiles of extended-spectrum beta-lactamase-producing Escherichia coli in East Tennessee dairy farms. Front Vet Sci. (2023) 10:1260433. doi: 10.3389/fvets.2023.1260433, PMID: PubMed DOI PMC
Weber LP, Dreyer S, Heppelmann M, Schaufler K, Homeier-Bachmann T, Bachmann L. Prevalence and risk factors for ESBL/AmpC-E. coli in pre-weaned dairy calves on dairy farms in Germany. Microorganisms. (2021) 9:2135. doi: 10.3390/microorganisms9102135, PMID: PubMed DOI PMC
Gonggrijp MA, Santman-Berends IMGA, Heuvelink AE, Buter GJ, van Schaik G, Hage JJ, et al. . Prevalence and risk factors for extended-spectrum β-lactamase- and AmpC-producing Escherichia coli in dairy farms. J Dairy Sci. (2016) 99:9001–13. doi: 10.3168/jds.2016-11134, PMID: PubMed DOI
Hille K, Ruddat I, Schmid A, Hering J, Hartmann M, von Münchhausen C, et al. . Cefotaxime-resistant E. coli in dairy and beef cattle farms—joint analyses of two cross-sectional investigations in Germany. Prev Vet Med. (2017) 142:39–45. doi: 10.1016/j.prevetmed.2017.05.003, PMID: PubMed DOI
Homeier-Bachmann T, Kleist JF, Schütz AK, Bachmann L. Distribution of ESBL/AmpC-Escherichia coli on a dairy farm. Antibiotics. (2022) 11:940. doi: 10.3390/antibiotics11070940, PMID: PubMed DOI PMC
Ludden C, Raven KE, Jamrozy D, Gouliouris T, Blane B, Coll F, et al. . One health genomic surveillance of Escherichia coli demonstrates distinct lineages and mobile genetic elements in isolates from humans versus livestock. MBio. (2019) 10:e02693–18. doi: 10.1128/mBio.02693-18, PMID: PubMed DOI PMC
Dorado-García A, Smid JH, van Pelt W, Bonten MJM, Fluit AC, van den Bunt G, et al. . Molecular relatedness of ESBL/AmpC-producing Escherichia coli from humans, animals, food and the environment: a pooled analysis. J Antimicrob Chemother. (2018) 73:339–47. doi: 10.1093/jac/dkx397, PMID: PubMed DOI
Iramiot JS, Kajumbula H, Bazira J, Kansiime C, Asiimwe BB. Antimicrobial resistance at the human–animal interface in the pastoralist communities of Kasese District, South Western Uganda. Sci Rep. (2020) 10:14737. doi: 10.1038/s41598-020-70517-w, PMID: PubMed DOI PMC
Qureshi MHF, Azam F, Shafique M, Aslam B, Farooq M, Ur Rehman A, et al. . A one health perspective of pet birds bacterial zoonosis and prevention. Pak Vet J. (2024) 44:1–8. doi: 10.29261/pakvetj/2024.147 DOI
Touchon M, Perrin A, de Sousa JAM, Vangchhia B, Burn S, O'Brien CL, et al. . Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS Genet. (2020) 16:e1008866. doi: 10.1371/journal.pgen.1008866, PMID: PubMed DOI PMC
Galarce N, Sánchez F, Escobar B, Lapierre L, Cornejo J, Alegría-Morán R, et al. . Genomic epidemiology of Shiga toxin-producing Escherichia coli isolated from the livestock-food-human interface in South America. Animals. (2021) 11:1845. doi: 10.3390/ani11071845, PMID: PubMed DOI PMC
CLSI . Performance standards for antimicrobial susceptibility testing. Twenty-fifth informational supplement. CLSI document M100-S25. Wayne, PA: Clinical and Laboratory Standards Institute; (2015).
Masarikova M, Sukkar I, Jamborova I, Medvecky M, Papousek I, Literak I, et al. . Antibiotic-resistant Escherichia coli from treated municipal wastewaters and black-headed Gull nestlings on the recipient river. One Health. (2024) 19:100901. doi: 10.1016/j.onehlt.2024.100901, PMID: PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. (2014) 30:2114–20. doi: 10.1093/bioinformatics/btu170, PMID: PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. . SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. (2012) 19:455–77. doi: 10.1089/cmb.2012.0021, PMID: PubMed DOI PMC
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. . ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. (2020) 75:3491–500. doi: 10.1093/jac/dkaa345, PMID: PubMed DOI PMC
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. . Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. (2012) 67:2640–4. doi: 10.1093/jac/dks261, PMID: PubMed DOI PMC
Carattoli A, Zankari E, Garciá-Fernández A, Larsen MV, Lund O, Villa L, et al. . In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. (2014) 58:3895–903. doi: 10.1128/AAC.02412-14, PMID: PubMed DOI PMC
Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. (2019) 47:D687–92. doi: 10.1093/nar/gky1080, PMID: PubMed DOI PMC
Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al. . Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. (2012) 50:1355–61. doi: 10.1128/JCM.06094-11, PMID: PubMed DOI PMC
Joensen KG, Tetzschner AM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and easy in silico serotyping of Escherichia coli using whole genome sequencing (WGS) data. J Clin Microbiol. (2015) 53:2410–26. doi: 10.1128/JCM.00008-15, PMID: PubMed DOI PMC
Beghain J., Bridier-Nahmias A., Nagard H., Denamur E., Clermont O. (2018). ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genomics 4,:e000192. doi: 10.1099/mgen.0.000192, PMID: PubMed DOI PMC
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. (2014) 30:2068–9. doi: 10.1093/bioinformatics/btu153, PMID: PubMed DOI
Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK, Feil EJ. PIRATE: a fast and scalable pangenomics toolbox for clustering diverged orthologues in bacteria. Gigascience. (2019) 8:giz119. doi: 10.1093/gigascience/giz119, PMID: PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. (2014) 30:1312–3. doi: 10.1093/bioinformatics/btu033, PMID: PubMed DOI PMC
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. (2016) 44:W242–5. doi: 10.1093/NAR/GKW290, PMID: PubMed DOI PMC
Letunic I, Bork P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. (2024) 52:W78–82. doi: 10.1093/nar/gkae268, PMID: PubMed DOI PMC
Arikan MS, Mat B, Alkan H, Çevrimli MB, Akin AC, Başar EK, et al. . Determination of subclinical mastitis prevalence in dairy cows in Türkiye through MetaAnalysis and production loss calculation. Pak Vet J. (2024) 44:391–9. doi: 10.29261/pakvetj/2024.142, PMID: PubMed DOI PMC
Tello M, Ocejo M, Oporto B, Lavín JL, Hurtado A. Within-farm dynamics of ESBL-producing Escherichia coli in dairy cattle: resistance profiles and molecular characterization by long-read whole-genome sequencing. Front Microbiol. (2022) 13:936843. doi: 10.3389/fmicb.2022.936843, PMID: PubMed DOI PMC
Zamudio R, Boerlin P, Beyrouthy R, Madec JY, Schwarz S, Mulvey MR, et al. . Dynamics of extended-spectrum cephalosporin resistance genes in Escherichia coli from Europe and North America. Nat Commun. (2022) 13:7490. doi: 10.1038/s41467-022-34970-7, PMID: PubMed DOI PMC
Manga I, Hasman H, Smidkova J, Medvecky M, Dolejska M, Cizek A. Fecal carriage and whole-genome sequencing-assisted characterization of CMY-2 beta-lactamase-producing Escherichia coli in calves at Czech dairy cow farm. Foodborne Pathog Dis. (2019) 16:42–53. doi: 10.1089/fpd.2018.2531, PMID: PubMed DOI
Li Y, Ma X, Li C, Dai X, Zhang L. Occurrence and genomic characterization of ESBL-producing Escherichia coli ST29 strains from swine with abundant virulence genes. Microb Pathog. (2020) 148:104483. doi: 10.1016/j.micpath.2020.104483, PMID: PubMed DOI
Massot M, Châtre P, Condamine B, Métayer V, Clermont O, Madec J-Y, et al. . Interplay between bacterial clones and plasmids in the spread of antibiotic resistance genes in the gut: lessons from a temporal study in veal calves. Appl Environ Microbiol. (2021) 87:e0135821. doi: 10.1128/AEM.01358-21, PMID: PubMed DOI PMC
Valiakos G, Kapna I. Colistin resistant mcr genes prevalence in livestock animals (swine, bovine, poultry) from a multinational perspective a systematic review. Vet Sci. (2021) 8:265. doi: 10.3390/vetsci8110265, PMID: PubMed DOI PMC
Massé J, Vanier G, Fairbrother JM, de Lagarde M, Arsenault J, Francoz D, et al. . Description of antimicrobial-resistant Escherichia coli and their dissemination mechanisms on dairy farms. Vet Sci. (2023) 10:242. doi: 10.3390/vetsci10040242, PMID: PubMed DOI PMC
Arimizu Y, Kirino Y, Sato MP, Uno K, Sato T, Gotoh Y, et al. . Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains. Genome Res. (2019) 29:1495–505. doi: 10.1101/gr.249268.119, PMID: PubMed DOI PMC
Massella E, Giacometti F, Bonilauri P, Reid CJ, Djordjevic SP, Merialdi G, et al. . Antimicrobial resistance profile and ExPEC virulence potential in commensal Escherichia coli of multiple sources. Antibiotics. (2021) 10:351. doi: 10.3390/antibiotics10040351, PMID: PubMed DOI PMC
He WY, Zhang XX, Gao GL, Gao MY, Zhong FG, Lv LC, et al. . Clonal spread of Escherichia coli O101:H9-ST10 and O101:H9-ST167 strains carrying fosA3 and blaCTX-M-14 among diarrheal calves in a Chinese farm, with Australian Chroicocephalus as the possible origin of E. coli O101:H9-ST10. Zool Res. (2021) 42:461–8. doi: 10.24272/J.ISSN.2095-8137.2021.153 PubMed DOI PMC
Gonzalez-Escalona N, Toro M, Rump LV, Cao G, Nagaraja TG, Meng J. Virulence gene profiles and clonal relationships of Escherichia coli O26:H11 isolates from feedlot cattle as determined by whole-genome sequencing. Appl Environ Microbiol. (2016) 82:3900–12. doi: 10.1128/AEM.00498-16, PMID: PubMed DOI PMC
Irrgang A, Roschanski N, Tenhagen B-A, Grobbel M, Skladnikiewicz-Ziemer T, Thomas K, et al. . Prevalence of mcr-1 in E. coli from Livestock and Food in Germany, 2010–2015. PLoS ONE. (2016) 11:e0159863. doi: 10.1371/journal.pone.0159863 PubMed DOI PMC
Sano E, Esposito F, Fontana H, Fuga B, Cardenas-Arias A, Moura Q, et al. One health clones of multidrug-resistant Escherichia coli carried by synanthropic animals in Brazil. One Health. (2022) 16:100476. doi: 10.1016/j.onehlt.2022.100476 PubMed DOI PMC