The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29614046
PubMed Central
PMC5951431
DOI
10.3390/ma11040547
PII: ma11040547
Knihovny.cz E-zdroje
- Klíčová slova
- gas atomized Al7075 alloy, mechanical milling, microhardness, microstructure, spark plasma sintering,
- Publikační typ
- časopisecké články MeSH
The compact samples of an Al7075 alloy were prepared by a combination of gas atomization, high energy milling, and spark plasma sintering. The predominantly cellular morphology observed in gas atomized powder particles was completely changed by mechanical milling. The continuous-like intermetallic phases present along intercellular boundaries were destroyed; nevertheless, a small amount of Mg(Zn,Cu,Al)₂ phase was observed also in the milled powder. Milling resulted in a severe plastic deformation of the material and led to a reduction of grain size from several µm into the nanocrystalline region. The combination of these microstructural characteristics resulted in abnormally high microhardness values exceeding 300 HV. Consolidation through spark plasma sintering (SPS) resulted in bulk samples with negligible porosity. The heat exposition during SPS led to precipitation of intermetallic phases from the non-equilibrium microstructure of both gas atomized and milled powders. SPS of the milled powder resulted in a recrystallization of the severely deformed structure. An ultra-fine grained structure (grain size close to 500 nm) with grains divided primarily by high-angle boundaries was formed. A simultaneous release of stored deformation energy and an increase in the grain size caused a drop of microhardness to values close to 150 HV. This value was retained even after annealing at 425 °C.
Department of Metals and Corrosion Engineering UCT Prague Technická 5 16628 Prague Czech Republic
Institute of Plasma Physics of the CAS Za Slovankou 1782 3 18200 Prague Czech Republic
Zobrazit více v PubMed
Hardy H.K., Heal T.J. Report on precipitation. Prog. Met. Phys. 1954;5:143–278. doi: 10.1016/0502-8205(54)90006-4. DOI
Wert J.A., Paton N.E., Hamilton C.H., Mahoney M. Grain-refinement in 7075 Aluminum by thermomechanical processing. Met. Trans. A. 1981;12:1267–1276. doi: 10.1007/BF02642340. DOI
Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI
Málek P., Turba K., Cieslar M., Harcuba P. Microstructure and high temperature deformation of an ultra-fine grained ECAP AA7075 aluminium alloy. Int. J. Mater. Res. 2013;104:3–10. doi: 10.3139/146.110833. DOI
Turba K., Malek P., Rauch E.F., Cieslar M. High strain rate superplasticity in a Zr and Sc modified 7075 aluminum alloy produced by ECAP. Mater. Sci. Forum. 2008;584–586:164–169. doi: 10.4028/www.scientific.net/MSF.584-586.164. DOI
Jones H. Rapid Solidification of Metals and Alloys. The Institution of Metallurgists; London, UK: 1982. Monograph 8.
Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI
Fecht H.-J. Nanostructure formation by mechanical attrition. Nanostruct. Mater. 1995;6:33–42. doi: 10.1016/0965-9773(95)00027-5. DOI
Orru R., Licheri R., Locci A.M., Cincotti A., Cao G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R. 2009;63:127–287. doi: 10.1016/j.mser.2008.09.003. DOI
Nagae T., Yokota M., Nose M., Tomida S., Otera K., Kamiya T., Saji S. Microstructure and mechanical properties of gas atomized aluminum alloy powder compact densified by pulsed current pressure sintering process. Mater. Trans. 2002;43:537–543. doi: 10.2320/matertrans.43.537. DOI
Rokni M.R., Widener C.A., Crawford G.A. Microstructural evolution of 7075 Al gas atomized powder and high-pressure cold sprayed deposition. Surf. Coat. Technol. 2014;251:254–263. doi: 10.1016/j.surfcoat.2014.04.035. DOI
Jeyakumar M., Kumar S., Gupta G.S. Microstructure and properties of the spray-formed and extruded 7075 Al alloy. Mater. Manuf. Process. 2010;25:777–785. doi: 10.1080/10426910903447253. DOI
Li F.-X., Liu Y.-Z., Yi J.-H. Microstructural evolution of gas atomized Al-Zn-Mg-Cu-Zr powders during semi-solid rolling process. Trans. Nonferrous Met. Soc. China. 2014;24:2475–2481. doi: 10.1016/S1003-6326(14)63373-2. DOI
Matsuki K., Iwaki M., Tokiyawa M., Murakami Z. Microstructural evolution during initial stage of high-strain rate superplastic deformation in powder metallurgical 7475 Al-0.7Zr alloy. Mater. Sci. Technol. 1991;7:513–519. doi: 10.1179/mst.1991.7.6.513. DOI
Malek P., Erlebach J., Cieslar M., Knoop F.M. Superplasticity in an Al-Zn-Mg-Cu-Zr alloy prepared by powder metallurgy. Phys. Status Solidi. 1996;157:275–286. doi: 10.1002/pssa.2211570209. DOI
Becker H., Dopita K., Stráská J., Málek P., Vilémová M., Rafaja D. Microstructure and properties of spark plasma sintered Al-Zn-Mg-Cu alloy. Acta Phys. Pol. A. 2015;128:602–605. doi: 10.12693/APhysPolA.128.602. DOI
Molnárová O., Málek P., Lukáč F., Chráska T. Spark plasma sintering of a gas atomized Al7075 alloy: Microstructure and properties. Materials. 2016;9:1004. doi: 10.3390/ma9121004. PubMed DOI PMC
Azimi A., Shokuhfar A., Zolriasatein A. Nanostructured Al-Zn-Mg-Cu-Zr alloy prepared by mechanical alloying followed by hot pressing. Mater. Sci. Eng. A. 2014;595:124–130. doi: 10.1016/j.msea.2013.11.094. DOI
Das T., Karunanithi R., Sinha A., Ghosh K.S., Bera S. Deformation, decomposition and hardening of nano Al7075 alloy prepared by mechanical milling and hot pressing. Adv. Powder Technol. 2016;27:1874–1877. doi: 10.1016/j.apt.2016.05.010. DOI
Molnárová O., Málek P., Németh G., Kozlík J., Lukáč F., Chráska T., Cinert J. The investigation of an Al7075 alloy prepared by spark plasma sintering of milled powders; Proceedings of the METAL 2016: 25th Anniversary International Conference on Metallurgy and Materials; Brno, Czech Republic. 25–27 May 2016; pp. 1200–1205.
Molnárová O., Málek P., Veselý J., Šlapáková M., Minárik P., Lukáč F., Chráska P., Novák P., Průša F. Nanocrystalline Al7075 + 1 wt % Zr alloy prepared using mechanical milling and spark plasma sintering. Materials. 2017;10:1105. doi: 10.3390/ma10091105. PubMed DOI PMC
Gupta M., Mohamed F.A., Lavernia E.J. Solidification characteristics of atomized Al-Ti powders. Scr. Metall. Mater. 1992;26:697–702. doi: 10.1016/0956-716X(92)90422-B. DOI
Devaraj S., Sankaran S., Kumar R. Influence of spark plasma sintering temperature on the densification, microstructure, and mechanical properties of Al-4.5 wt % Cu alloy. Acta Metall. Sin. 2013;26:761–771. doi: 10.1007/s40195-013-0159-z. DOI
Lukac F., Chraska T., Molnarova O., Malek P., Cinert J. Effect of cryogenic milling on Al7075 prepared by spark plasma sintering method. Powder Diffr. 2017;32:S221–S224. doi: 10.1017/S0885715617000483. DOI
Chen H.B., Tao K., Yang B., Zhang J.S. Nanostructured Al-Zn-Mg-Cu alloy synthetized by cryomilling and spark plasma sintering. Trans. Nonferrous Met. Soc. China. 2009;19:1110–1115. doi: 10.1016/S1003-6326(08)60415-X. DOI
Mondolfo L.F. 4-Aluminum-Zinc Alloys. In: Mondolfo L.F., editor. Aluminium Alloys: Structure and Properties. Butterworth-Heinemann; London, UK: 1976. pp. 842–882.
Lityńska-Dobrzyńska L., Ochin P., Góral A., Faryna M., Dutkiwwicz J. The microstructure of rapidly solidified Al-Zn-Mg-Cu Alloys with Zr Addition. Solid State Phenom. 2010;163:42–45. doi: 10.4028/www.scientific.net/SSP.163.42. DOI
Al-Aqeeli N. Processing of CNTs reinforced Al-based nanocomposites using different consolidation techniques. J. Nanomater. 2013;2013 doi: 10.1155/2013/370785. DOI
Srinivasarao B., Suryanarayana C., Oh-ishi K., Hano K. Microstructure and mechanical Propeerties of Al-Zr nanocomposite materials. Mater. Sci. Eng. A. 2009;518:100–107. doi: 10.1016/j.msea.2009.04.032. DOI
Liu Z.F., Zhang Z.H., Lu J.F., Korznikova V.E., Wang F.C. Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminium. Mater. Des. 2014;64:625–630. doi: 10.1016/j.matdes.2014.08.030. DOI
Malek P., Cieslar M. The influence of processing route on the plastic deformation of Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A. 2002;324:90–95. doi: 10.1016/S0921-5093(01)01289-8. DOI
Innovative Powder Pre-Treatment Strategies for Enhancing Maraging Steel Performance
Development of TiAl-Si Alloys-A Review
Properties Comparison of Ti-Al-Si Alloys Produced by Various Metallurgy Methods