Spark Plasma Sintering of a Gas Atomized Al7075 Alloy: Microstructure and Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28774126
PubMed Central
PMC5456988
DOI
10.3390/ma9121004
PII: ma9121004
Knihovny.cz E-zdroje
- Klíčová slova
- gas atomized Al7075 alloy, high temperature stability, microhardness, microstructure, spark plasma sintering,
- Publikační typ
- časopisecké články MeSH
The powder of an Al7075 alloy was prepared by gas atomization. A combination of cellular, columnar, and equiaxed dendritic-like morphology was observed in individual powder particles with continuous layers of intermetallic phases along boundaries. The cells are separated predominantly by high-angle boundaries, the areas with dendritic-like morphology usually have a similar crystallographic orientation. Spark plasma sintering resulted in a fully dense material with a microstructure similar to that of the powder material. The continuous layers of intermetallic phases are replaced by individual particles located along internal boundaries, coarse particles are formed at the surface of original powder particles. Microhardness measurements revealed both artificial and natural ageing behavior similar to that observed in ingot metallurgy material. The minimum microhardness of 81 HV, observed in the sample annealed at 300 °C, reflects the presence of coarse particles. The peak microhardness of 160 HV was observed in the sample annealed at 500 °C and then aged at room temperature. Compression tests confirmed high strength combined with sufficient plasticity. Annealing even at 500 °C does not significantly influence the distribution of grain sizes-about 45% of the area is occupied by grains with the size below 10 µm.
Zobrazit více v PubMed
Jones H. Rapid Solidification of Metals and Alloys, Monograph 8. The Institution of Metallurgists; London, UK: 1982.
Lavernia E.J., Ayers J.D., Srivatsan T.S. Rapid solidification processing with specific application to aluminium alloys. Int. Mater. Rev. 1992;37:1–44. doi: 10.1179/imr.1992.37.1.1. DOI
Orru R., Licheri R., Locci A.M., Cincotti A., Cao G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R. 2009;63:127–287. doi: 10.1016/j.mser.2008.09.003. DOI
Nagae T., Yokota M., Nose M., Tomida S., Otera K., Kamiya T., Saji S. Microstructure and mechanical properties of gas atomized aluminum alloy powder compact densified by pulsed current pressure sintering process. Mater. Trans. 2002;43:537–543. doi: 10.2320/matertrans.43.537. DOI
Rajabi M., Vahidi M., Simchi A., Davami P. Effect of rapid solidification on the microstructure and mechanical properties of hot-pressed Al-20Si-5Fe alloys. Mater. Charact. 2009;60:1370–1381. doi: 10.1016/j.matchar.2009.06.014. DOI
Malek P., Janecek M., Bartuska P. Structure and properties of a powder metallurgy Al-Zr-Ti alloy. Kov. Mater. 2002;40:371–388.
Matsuki K., Iwaki M., Tokiyawa M., Murakami Z. Microstructural evolution during initial stage of high-strain rate superplastic deformation in powder metallurgical 7475 Al-0.7Zr alloy. Mater. Sci. Technol. 1991;7:513–519. doi: 10.1179/mst.1991.7.6.513. DOI
Malek P., Erlebach J., Cieslar M., Knoop F.M. Superplasticity in an Al-Zn-Mg-Cu-Zr alloy prepared by powder metallurgy. Phys. Stat. Solidi A. 1996;157:275–286. doi: 10.1002/pssa.2211570209. DOI
Rokni M.R., Widener C.A., Crawford G.A. Microstructural evolution of 7075 Al gas atomized powder and high-pressure cold sprayed deposition. Surf. Coat. Technol. 2014;251:254–263. doi: 10.1016/j.surfcoat.2014.04.035. DOI
Jeyakumar M., Kumar S., Gupta G.S. Microstructure and properties of the spray-formed and extruded 7075 Al alloy. Mater. Manuf. Process. 2010;25:777–785. doi: 10.1080/10426910903447253. DOI
Li F.-X., Liu Y.-Z., Yi J.-H. Microstructural evolution of gas atomized Al-Zn-Mg-Cu-Zr powders during semi-solid rolling process. Trans. Nonferr. Met. Soc. China. 2014;24:2475–2481. doi: 10.1016/S1003-6326(14)63373-2. DOI
Asgharzadeh H., Simchi A., Kim H.S. Microstructural features, texture and strengthening mechanisms of nanostructured AA6063 alloy processed by powder metallurgy. Mater. Sci. Eng. A. 2011;528:3981–3989. doi: 10.1016/j.msea.2011.01.082. DOI
Azimi A., Shokuhfar A., Zolriasatein A. Nanostructured Al-Zn-Mg-Cu-Zr alloy prepared by mechanical alloying followed by hot pressing. Mater. Sci. Eng. A. 2014;595:124–130. doi: 10.1016/j.msea.2013.11.094. DOI
Das T., Karunanithi R., Sinha A., Ghosh K.S., Bera S. Deformation, decomposition and hardening of nano Al7075 alloy prepared by mechanical milling and hot pressing. Adv. Powder Technol. 2016;27:1874–1877. doi: 10.1016/j.apt.2016.05.010. DOI
Saheb N., Aliyu I.K., Hassan S.F., Al-Aqeeli N. Matrix structure evolution and nanoreinforcement distribution in mechanically milled and spark plasma sintered Al-SiC nanocomposites. Materials. 2014;7:6748–6767. doi: 10.3390/ma7096748. PubMed DOI PMC
Hardy H.K., Heal T.J. Report on precipitation. Prog. Met. Phys. 1954;5:143–278. doi: 10.1016/0502-8205(54)90006-4. DOI
Liu J.Z., Chen J.H., Yang X.B., Ren S., Wu C.L., Xub H.Y., Zoub J. Revisiting the precipitation sequence in Al-Zn-Mg-based alloys by high-resolution transmission electron microscopy. Scr. Mater. 2010;63:1061–1064. doi: 10.1016/j.scriptamat.2010.08.001. DOI
Hu T., Ma K., Topping T.D., Schoenung J.M., Lavernia E.J. Precipitation phenomena in an ultrafine-grained Al alloy. Acta Mater. 2013;61:2163–2178. doi: 10.1016/j.actamat.2012.12.037. DOI
Mondolfo L.F. Aluminium Alloys: Structure and Properties. Butterworth; London, UK: 1976.
Becker H., Dopita M., Stráská J., Málek P., Vilémová M., Rafaja D. Microstructure and properties of spark plasma sintered Al-Zn-Mg-Cu alloy. Acta Phys. Pol. A. 2015;128:602–605. doi: 10.12693/APhysPolA.128.602. DOI
Samuel F.H. Microstructural characterization of rapidly solidified Al-Li-Co powders. Metall. Trans. A. 1986;17:73–91. doi: 10.1007/BF02644444. DOI
Gupta M., Mohamed F.A., Lavernia E.J. Solidification characteristics of atomized Al-Ti powders. Scr. Metall. Mater. 1992;26:697–702. doi: 10.1016/0956-716X(92)90422-B. DOI
Devaraj S., Sankaran S., Kumar R. Influence of spark plasma sintering temperature on the densification, microstructure and mechanical properties of Al-4.5 wt % Cu alloy. Acta Metall. Sin. 2013;26:761–771. doi: 10.1007/s40195-013-0159-z. DOI
Saller B.D., Hu T., Ma K., Lavernia E.J., Schoenung J.M. A comparative analysis of solubility, segregation, and phase formation in atomized and cryomilled Al-Fe alloy powders. J. Mater. Sci. 2015;50:4683–4697. doi: 10.1007/s10853-015-9019-8. DOI
De Sanctis M. Structure and properties of rapidly solidified ultrahigh strength Al-Zn-Mg-Cu alloys produced by spray deposition. Mater. Sci. Eng. A. 1991;141:103–121. doi: 10.1016/0921-5093(91)90714-X. DOI
Hulbert D.M., Anders A., Dudina D.V., Anderson J., Jiang D., Unuvar C., Tamburini U.A., Lavernia E.J., Mukherjee A.K. The absence of plasma in “spark plasma sintering”. J. Appl. Phys. 2008;104:033305. doi: 10.1063/1.2963701. DOI
Diouf S., Molinari A. Densification mechanism in spark plasma sintering: Effect of particle size and pressure. Powder Technol. 2012;221:220–227. doi: 10.1016/j.powtec.2012.01.005. DOI
Sweet G.A., Brochu M., Hexemer R.L., Jr., Donaldson I.W., Bishop D.P. Microstructure and mechanical properties of air atomized aluminium powder consolidated via spark plasma sintering. Mater. Sci. Eng. A. 2014;608:273–282. doi: 10.1016/j.msea.2014.04.078. DOI
Liu Z.F., Zhang Z.H., Lu J.F., Korznikov A.V., Korznikova E., Wang F.C. Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminium. Mater. Des. 2014;64:625–630. doi: 10.1016/j.matdes.2014.08.030. DOI
Le G.M., Godfrey A., Hansen N. Structure and strength of aluminium with sub-micrometer/micrometer grain size prepared by spark plasma sintering. Mater. Des. 2013;49:360–367. doi: 10.1016/j.matdes.2013.01.018. DOI
Kwon H., Park D.H., Park Y., Silvain J.F., Kawasaki A., Park Y. Spark plasma sintering behavior of pure aluminium depending on various sintering temperatures. Met. Mater. Int. 2010;16:71–75. doi: 10.1007/s12540-010-0071-2. DOI
Molnarova O., Malek P., Becker H. The investigation of the Al7075 + 1 wt % Zr alloy prepared using spark plasma sintering technology; Proceedings of the 24th International Conference on Metallurgy and Materials; Brno, Czech Republic. 3–5 June 2015; pp. 1221–1226.
Juhász A., Tasnádi P., Kovács I., Ungár T. Mechanical properties of Al-Zn-Mg alloys investigated by microhardness measurements. J. Mater. Sci. 1981;16:367–372. doi: 10.1007/BF00738625. DOI
Ferragut R., Somoza A., Tolley A., Torriani I. Precipitation kinetics in Al-Zn-Mg commercial alloys. J. Mater. Process. Technol. 2003;141:35–40. doi: 10.1016/S0924-0136(02)01044-0. DOI